精英家教网 > 高中数学 > 题目详情

已知a≥0,函数f(x)=(x2-2ax)ex
(Ⅰ)当x为何值时,f(x)取得最小值?证明你的结论;
(Ⅱ)设f(x)在[-1,1]上是单调函数,求a的取值范围.

解:(1)令f'(x)=0即[x2-2(a-1)x-2a]ex=0∴x2-2(a-1)x-2a=0
∵△=[2(a-1)]2+8a=4(a2+1)>0∴x1=a-1-,x2=a-1+
又∵当x∈(-∞,a-1-)时,f'(x)>0;
当x∈(a-1-,a-1+)时,f'(x)<0;
当x∈(a-1+,+∞)时,f'(x)>0.
列表如下:

∴x1,x2分别为f(x)的极大值与极小值点.
又∵f(x)=0;当x→+∞时,f(x)→+∞.
而f(a-1+)=2(1-<0.
∴当x=a-1+时,f(x)取得最小值.

(2)f(x)在[-1,1]上单调,则f'(x)≥0(或≤0)在[-1,1]上恒成立.
而f'(x)=[x2-2(a-1)x-2a]ex,令g(x)=x2-2(a-1)x-2a=[x-(a-1)]2-(a2+1).
∴f'(x)≥0(或≤0)即g(x)≥0(或≤0).
当g(x)≥0在[-1,1]上恒成立时,有
①当-1≤a-1≤1即0≤a≤2时,g(x)min=g(a-1)=-(a2+1)≥0(舍);
②当a-1>1即a≥2时,g(x)min=g(1)=3-4a≥0∴a≤(舍).
当g(x)≤0在[-1,1]上恒成立时,有
①当-1≤a-1≤0即0≤a≤1时,g(x)max=g(1)=3-4a≤0,∴≤a≤1;
②当0<a-1≤1即1<a≤2时,g(x)max=g(-1)=-1≤0,∴1<a≤2;
③当1<a-1即a>2时,g(x)max=g(-1)=-1≤0,∴a>2.
故a∈[,+∞).
分析:(Ⅰ)直接求两个函数乘积的导函数,令其等于0,求出极值点,判断单调性,进而求出最小值;
(Ⅱ)f(x)在[-1,1]上是单调函数,即其导函数恒大于等于或小于等于零,转化为不等式恒成立问题,再通过构造函数转化为求函数最值,利用导数的方法即可解决.
点评:本题考查函数单调性的性质,导数在函数最大值、最小值中的应用,灵活运用分类讨论思想与转化思想是解决此类题目的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a≥0,函数f(x)=(x2-2ax)ex
(Ⅰ)当x为何值时,f(x)取得最小值?证明你的结论;
(Ⅱ)设f(x)在[-1,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≠0,函数f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,x∈R.
(I)求函数f(x)的单调递减区间;
(Ⅱ)若在区间(0,
1
2
]
上至少存在一个实数x0,使f(x0)>g(x0)成立,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≥0,函数f(x)=x2+ax.设x1∈(-∞,-
a
2
)
,记曲线y=f(x)在点M(x1,f(x1))处的切线为l,l与x轴的交点是N(x2,0),O为坐标原点.
(Ⅰ)证明:x2=
x
2
1
2x1+a

(Ⅱ)若对于任意的x1∈(-∞,-
a
2
)
,都有
OM
ON
9a
16
成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≥0,函数f(x)=(x2-2ax)ex
(1)当a=0时讨论函数的单调性;
(2)当x取何值时,f(x)取最小值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a≥0,函数f(x)=a2+
2
cos(x-
π
4
)+
1
2
sin2x
的最大值为
25
2
,则实数a的值是
12-2
2
12-2
2

查看答案和解析>>

同步练习册答案