精英家教网 > 高中数学 > 题目详情

【题目】已知点是直线)上一动点, 是圆的两条切线, 为切点, 为圆心,若四边形面积的最小值是,则的值是( )

A. B. C. D.

【答案】D

【解析】∵圆的方程为:

∴圆心C(0,1),半径r=1.

根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小。切线长为4,

∴圆心到直线l的距离为.

∵直线

,解得

所求直线的斜率为

故选D.

型】单选题
束】
19

【题目】抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点 ,垂足为,则的面积是 ( )

A. B. C. D.

【答案】C

【解析】抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,

经过F且斜率为的直线 与抛物线在x轴上方的部分相交于点A32),

AKl,垂足为K12),

∴△AKF的面积是4

故答案选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 1, 的中点, 为线段上的动点,过点A、P、Q的平面截该正方体所得的截面记为.则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;③当时, 为六边形;④当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为 也是抛物线的焦点,点在第一象限的交点,且.

(1)求的方程;

(2)平面上的点满足,直线,且与交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过圆上任意一点轴引垂线垂足为(点可重合),点的中点.

(1)求的轨迹方程;

(2)若点的轨迹方程为曲线,不过原点的直线与曲线交于两点,满足直线 的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.

(1)求a的值;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在多面体中,四边形是边长为的正方形, 为等腰梯形,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面结论正确的是( )

①“所有2的倍数都是4的倍数,某数是2的倍数,则一定是4的倍数”,这是三段论推理,但其结论是错误的.

②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.

③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.

④一个数列的前三项是1,2,3,那么这个数列的通项公式必为.

A. ①③ B. ②③ C. ③④ D. ②④

查看答案和解析>>

同步练习册答案