精英家教网 > 高中数学 > 题目详情
19.甲乙两人下棋,若甲获胜的概率为$\frac{1}{5}$,甲乙下成和棋的概率为$\frac{2}{5}$,则乙不输棋的概率为$\frac{4}{5}$.

分析 乙不输棋的对立事件是甲获胜,由此利用对立事件概率计算公式能求出结果.

解答 解:∵甲乙两人下棋,甲获胜的概率为$\frac{1}{5}$,甲乙下成和棋的概率为$\frac{2}{5}$,
∴乙不输棋的概率:
p=1-$\frac{1}{5}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知θ是第三象限角,且sinθ-2cosθ=-$\frac{2}{5}$,则sinθ+cosθ=-$\frac{31}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}满足,若a22+a52=5.则S7的最大值是$\frac{35}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C与y轴相切,圆心在直线x-2y=0上,且被x轴的正半轴截得的弦长为2$\sqrt{3}$.
(1)求圆C的方程;
(2)若点P(x,y)在圆C上,x2+y2-4y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项公式为an=1g($\sqrt{{n}^{2}+1}$-n),判断数列{an}是否为单调数列,如是,请说明{an}的单调性;如不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线x+y=0被圆(x-2)2+y2=4截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆的标准方程:
(Ⅱ)过椭圆焦点F的直线l交椭圆于A、B两点.
(1)若F是右焦点,y轴上一点M(0,$\frac{1}{3}$)满足|MN|=|MB|,求直线1斜率k的值;
(2)若F是左焦点,设过点F且不与坐标轴垂直的直线1交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=x(x-2)的定义域为[a,b],值域为[-1,3],则点(a,b)对应图中的(  )
A.点H(1,3)和点F(-1,1)B.线段EF和线段GHC.线段EH和线段FGD.线段EF和线段EH

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中a1=1,对?n∈N*,函数f(x)=x2-an+1cosx+2an+1在定义域内有唯一的零点.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案