精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(I)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$,求数列{bn}的前n项和Tn

分析 (I)由点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,可得Sn=n2+2n,利用递推关系可得an
(II)f′(x)=2x+2,过点Pn(n,Sn)的切线的斜率为k.可得kn=2n+2.bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,再利用“裂项求和”方法即可得出.

解答 解:(I)∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,∴Sn=n2+2n,
n=1时,a1=3;n≥2,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.
当n=1时上式也成立,∴an=2n+1.
(II)f′(x)=2x+2,过点Pn(n,Sn)的切线的斜率为k.
∴kn=2n+2.∴bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$=$\frac{n}{6n+9}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、数列递推关系、“裂项求和”方法、导数的几何意义、函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,则sin(2θ+$\frac{π}{3}$)=$-\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线x2=2py(p>0)的准线方程为y=-3,则p=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆(x-$\sqrt{2}$)2+y2=1相切,则此双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=sin(x2)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧面ACC1A1⊥侧面ABB1A1,∠B1A1A=∠C1A1A=60°,AA1=AC=4,AB=1.
(Ⅰ)求证:A1B1⊥B1C1
(Ⅱ)求三棱锥ABC-A1B1C1的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆$M:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)经过点$P(1,\sqrt{2})$,其离心率与双曲线x2-y2=1的离心率互为倒数.
(Ⅰ)求椭圆M的方程;
(Ⅱ) 动直线$l:y=\sqrt{2}x+m$交椭圆M于A、B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且sin2B-sin2A=sin2C-sinAsinC.
(Ⅰ)求角B的值;
(Ⅱ)若△ABC的面积为$\sqrt{3}$,求a+c取得最小值时b的值.

查看答案和解析>>

同步练习册答案