精英家教网 > 高中数学 > 题目详情

 中,,   

(1)求(2)求的长;(3)若的中点,求中线的长。

 

 

 

 

 

 

 

【答案】

 中,

(1)求的长;(3)若的中点,求中线的长。

(1);(2)(3)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a2=a+2(a为常数),Sn是{an}的前n项和,且Sn是nan与na的等差中项.
(1)求a1,a3
(2)猜想an的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2与a4的等差中项;
(1)求数列{an}的通项公式;    
(2)若bn=an-log2an,Sn=b1+b2+…+bn,求使不等式Sn-2n+1+47<0成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
1
2
n(n-1)
,且an是bn与1的等差中项.
(1)求数列{an}和数列{bn}的通项公式;
(2)若cn=
1
nan
(n≥2)
,求c2+c3+c4+…+cn
(3)若f(n)=
an,n=2k-1
bn,n=2k
(k∈N*)
,是否存在n∈N*使得f(n+11)=2f(n),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a2•a3=64,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项an
(2)若bn=anlog
12
an
,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)已知单调递增的等比数列{an}中,a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an,求数列{
1bnbn+1
}
的前n项和Tn

查看答案和解析>>

同步练习册答案