精英家教网 > 高中数学 > 题目详情
2.设数列{an}满足:a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,其中,[an]、{an}分别表示正数an的整数部分、小数部分,则a2016=3023+$\frac{\sqrt{3}-1}{2}$.

分析 由已知求出数列的前几项,得到数列的项呈现的规律得答案.

解答 解:∵an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,且a1=$\sqrt{3}$=1+($\sqrt{3}-1$),
∴${a}_{2}=[{a}_{1}]+\frac{1}{\{{a}_{1}\}}=1+\frac{1}{\sqrt{3}-1}=1+\frac{\sqrt{3}+1}{2}$=$2+\frac{\sqrt{3}-1}{2}$,
${a}_{3}=[{a}_{2}]+\frac{1}{\{{a}_{2}\}}=2+\frac{1}{\frac{\sqrt{3}-1}{2}}=2+\frac{2}{\sqrt{3}-1}$=$4+(\sqrt{3}-1)$,
${a}_{4}=[{a}_{3}]+\frac{1}{\{{a}_{3}\}}=4+\frac{1}{\sqrt{3}-1}=4+\frac{\sqrt{3}+1}{2}$=$5+\frac{\sqrt{3}-1}{2}$,
${a}_{5}=[{a}_{4}]+\frac{1}{\{{a}_{4}\}}=5+\frac{1}{\frac{\sqrt{3}-1}{2}}=5+\frac{2}{\sqrt{3}-1}$=$7+(\sqrt{3}-1)$,
${a}_{6}=[{a}_{5}]+\frac{1}{\{{a}_{5}\}}=7+\frac{1}{\sqrt{3}-1}=7+\frac{\sqrt{3}+1}{2}=8+$$\frac{\sqrt{3}-1}{2}$,
${a}_{7}=[{a}_{6}]+\frac{1}{\{{a}_{6}\}}=8+\frac{2}{\sqrt{3}-1}=8+\sqrt{3}+1$=$10+\sqrt{3}-1$,
${a}_{8}=[{a}_{7}]+\frac{1}{\{{a}_{7}\}}=10+\frac{1}{\sqrt{3}-1}=10+\frac{\sqrt{3}+1}{2}$=$11+\frac{\sqrt{3}-1}{2}$.

∴a2016=2016+1007+$\frac{\sqrt{3}-1}{2}$=3023+$\frac{\sqrt{3}-1}{2}$.
故答案为:3023+$\frac{\sqrt{3}-1}{2}$.

点评 本题是新定义题,考查了数列递推式,关键是由数列前几项得到数列的规律,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,短轴的一个顶点与椭圆两焦点构成的三角形面积为2$\sqrt{3}$.
(I)求椭圆的方程;
(Ⅱ)直线y=$\frac{1}{2}$x+m与椭圆交于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若集合{a,b,c}当中的元素是△ABC的三边长,则该三角形是(  )
A.正三角形B.等腰三角形C.不等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式:ax2+(a+2)x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y∈R*,2y+x-xy=0,若x+2y>m2+2m恒成立,则m的取值范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P为抛物线C:x2=y上的一点,F为抛物线C的焦点,若|PF|=1,则点P的纵坐标为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,已知an>0,a1=1,且an2,2Sn,an+12成等比数列,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}^{2}}$,数列{bn}前n项和为Tn,求证Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的S=(  )
A.1023B.512C.511D.255

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.tan(-$\frac{4}{3}$π)=$-\sqrt{3}$.

查看答案和解析>>

同步练习册答案