精英家教网 > 高中数学 > 题目详情

已知直线l:2 mx-y-8 m-3=0和圆C:(x-3)2+(y+6)2=25.

(Ⅰ)证明:不论m取什么实数,直线l与圆C总相交;

(Ⅱ)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:mx-y-2m-1=0,m是实数.
(I)直线l恒过定点P,求定点P的坐标;
(II)若原点到直线l的距离是2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有∠AOB=
π
3
,求曲线P的方程;
(2)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有
OA
OB
<M恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=mx+4,圆C:x2+y2=4.
(1)若直线l与圆C相切,求实数m的值和直线l的方程;
(2)若直线l与圆C相离,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=mx+1与曲线C:ax2+y2=2(m、a∈R)交于A、B两点,O为坐标原点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
为定值T?指出T的值;
(3)已知点M(0,-1),当a=-2,m变化时,动点P满足
MP
=
OA
+
OB
,求动点P的纵坐标的变化范围.

查看答案和解析>>

同步练习册答案