精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2 , 若存在实数a,b,使f(x)在[a,b]上的值域为[ ],则ab=

【答案】
【解析】解:设x<0,则﹣x>0,

∴f(﹣x)=﹣2x﹣(﹣x)2,即﹣f(x)=﹣x2﹣2x,

∴f(x)=x2+2x,设这样的实数a,b存在,

得ab(a+b)=0,舍去;由 ,得a=1,b= 矛盾,舍去;

得a,b是方程x3+2x2=1的两个实数根,

由(x+1)(x2+x﹣1)=0

得a= ,b=﹣1,∴ab=

所以答案是

【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ), 的最小正周期为π,且图象关于x= 对称.
(1)求ω和φ的值;
(2)将函数f(x)的图象上所有横坐标伸长到原来的4倍,再向右平移 个单位得到函数g(x)的图象,求g(x)的单调递增区间以及g(x)≥1的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣2x+3 (Ⅰ)若函数 的最小值为3,求实数m的值;
(Ⅱ)若对任意互不相同的x1 , x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为偶函数.
(1)求实数t值;
(2)记集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判断λ与E的关系;
(3)当x∈[a,b](a>0,b>0)时,若函数f(x)的值域为[2﹣ ,2﹣ ],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,
(1)若△ABC的面积等于 ,求a,b;
(2)若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)当x∈(0,π)时,求f(x)的单调递减区间;
(Ⅱ)若f(x)在[0,θ]上的值域为[0,2 +1],求cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是公比q>1的等比数列,若a2005和a2006是方程4x2﹣8x+3=0的两个根,则a2007+a2008=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一辆汽车在某段路程中的行驶速率与时间的关系如图所示.
(1)求图中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1 , y1)、B(x2 , y2)两点间的“直角距离”为:DAB)=|x1﹣x2|+|y1﹣y2|.

(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足DPO≤1的点P所组成的集合,
点集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的区域的面积.

查看答案和解析>>

同步练习册答案