精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)=ax+k经过点(0,4),其反函数y=f-1(x)的图象经过点(7,1),则f(x)在定义域上是( )
A.奇函数
B.偶函数
C.增函数
D.减函数
【答案】分析:由题意得,函数y=f(x)=ax+k经过点(0,4),(1,7),从而得出关于a,k的方程,解此方程即可得函数的解析式,
再判断函数的单调性即可.
解答:解:∵其反函数y=f-1(x)的图象经过点(7,1),
∴函数y=f(x)=ax+k经过点(1,7),

∴k=3,a=4,
∴f(x)=4x+3.
∴f(x)在定义域上是增函数
故选C.
点评:反函数是函数知识中重要的一部分内容.对函数的反函数的研究,我们应从函数的角度去理解反函数的概念,从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案