精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且∥面BDM.

(1)求直线PC与平面BDM所成角的正弦值;

(2)求平面BDM与平面PAD所成锐二面角的大小.

【答案】(1);(2)

【解析】试题分析:

利用题意建立空间直角坐标系,据此可得:

(1) 直线PC与平面BDM所成角的正弦值为

(2) 平面BDM与平面PAD所成锐二面角的大小为.

试题解析:

解:因为 作AD边上的高PO,

则由,由面面垂直的性质定理,得

是矩形,同理,知, ,故.

以AD中点O为坐标原点,OA所在直线为x轴,OP所在直线为z轴,AD的垂直平分线y轴,建立如图所示的坐标系,则

连结AC交BD于点N,由

所以,又N是AC的中点,

所以M是PC的中点,则,设面BDM的法向量为

,得

,解得,所以取.

(1)设PC与面BDM所成的角为,则

所以直线PC与平面BDM所成角的正弦值为 .

(2)面PAD的法向量为向量,设面BDM与面PAD所成的锐二面角为

,故平面BDM与平面PAD所成锐二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线上的点到点的距离比它到直线的距离小2.

1)求曲线的方程;

(2)过点且斜率为的直线交曲线 两点,若时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间[﹣ ,π]上的函数y=f(x)的图象关于直线x= 对称,当x≥ 时,函数y=sinx.
(1)求f(﹣ ),f(﹣ )的值;
(2)求y=f(x)的表达式
(3)若关于x的方程f(x)=a有解,那么将方程在a取某一确定值时所求得的所有解的和记为Ma , 求Ma的所有可能取值及相应a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为棱AB、AD的中点.
(1)求证:EF平行平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1
(3)求直线A1C与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过圆上任意一点轴引垂线垂足为(点可重合),点的中点.

(1)求的轨迹方程;

(2)若点的轨迹方程为曲线,不过原点的直线与曲线交于两点,满足直线 的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面的菱形, 为棱上的动点,且.

(I)求证: 为直角三角形;

(II)试确定的值,使得二面角的平面角余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为 ,三棱锥D﹣BCE的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (本小题满分12分)

如图, 在四面体ABOC中, , 且.

)设为的中点, 证明: 在上存在一点,使,并计算

)求二面角的平面角的余弦值。

查看答案和解析>>

同步练习册答案