精英家教网 > 高中数学 > 题目详情
16.已知数列{an}为等差数列,a2=3,a3+a6=11.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=2({a_n}+\frac{1}{{{2^{a_n}}}})$,其中n∈N*,求数列{bn}的前n项和Sn

分析 (I)利用等差数列的通项公式即可得出;
(II)利用等差数列与等比数列的前n项和公式即可得出.

解答 解:(Ⅰ)设等差数列{an}的公差是d,则$\left\{\begin{array}{l}{{a}_{1}+d=3}\\{2{a}_{1}+7d=11}\end{array}\right.$,
解得a1=2,d=1.
∴数列{an}的通项公式为an=2+(n-1)=n+1.
(Ⅱ)${b_n}=2({a_n}+\frac{1}{{{2^{a_n}}}})$=2$(n+1+\frac{1}{{2}^{n+1}})$=2n+2+$\frac{1}{{2}^{n}}$.
∴数列{bn}的前n项和Sn=$\frac{n(4+2n+2)}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
=n2+3n+1-$\frac{1}{{2}^{n}}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=-x2+4x,
(1)求f(x)的解析式
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a∈N,又三点A(a,0),B(0,a+4),C(1,3)共线,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=1-\frac{2}{{{2^x}+1}}$.
(1)求证f(x)是奇函数;
(2)试判断f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在底面为平行四边形的棱柱ABCD-A1B1C1D1中,AB=AD=2AA1=2,且∠A1AB=∠A1AD=∠BAD=60°,则四棱柱ABCD-A1B1C1D1的对角线AC1的长为(  )
A.$\sqrt{14}$B.4C.$\sqrt{17}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={-1,0,1},B={x|x2+x≤0},则A∩B={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式${(\frac{1}{2})^{x-{x^2}}}$<log381的解集为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆C1:(x+2)2+(y-2)2=1与圆C2:(x-2)2+(y-5)2=r2相切,则r为(  )
A.4B.6C.4或6D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从一小组中选出正、副组长各一人,与从这个小组中选出4名学生代表的选法种数之比为2:13,则这个小组的人数是(  )
A.10B.13C.15D.18

查看答案和解析>>

同步练习册答案