精英家教网 > 高中数学 > 题目详情
13.2015年春,某地干旱少雨,农作物受灾严重,为了使今后保证农田灌溉,当地政府决定建一横断面为等腰梯形的水渠(水渠的横断面如图所示),为减少水的流失量,必须减少水与渠壁的接触面,若水渠横断面的面积设计为定值S,渠深为h,则水渠壁的倾斜角α(0<α<$\frac{π}{2}$)为多大时,水渠中水的流失量最小?

分析 作BE⊥DC于E,令y=AD+DC+BC,由已知可得y=$\frac{S}{h}$+$\frac{h(2-cosα)}{sinα}$(0<α<$\frac{π}{2}$),令u=$\frac{2-cosα}{sinα}$,求出u取最小值时α的大小,可得结论.

解答 解:作BE⊥DC于E,
在Rt△BEC中,BC=$\frac{h}{sinα}$,CE=hcotα,
又AB-CD=2CE=2hcotα,AB+CD=$\frac{2S}{h}$,
故CD=$\frac{S}{h}$-hcotα.
设y=AD+DC+BC,
则y=$\frac{S}{h}$-hcotα+$\frac{2h}{sinα}$=$\frac{S}{h}$+$\frac{h(2-cosα)}{sinα}$(0<α<$\frac{π}{2}$),
由于S与h是常量,欲使y最小,只需u=$\frac{2-cosα}{sinα}$取最小值,
u可看作(0,2)与(-sinα,cosα)两点连线的斜率,
由于α∈(0,$\frac{π}{2}$),
点(-sinα,cosα)在曲线x2+y2=1
(-1<x<0,0<y<1)上运动,
当过(0,2)的直线与曲线相切时,直线斜率最小,
此时切点为(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),
则有sinα=$\frac{\sqrt{3}}{2}$,且cosα=$\frac{1}{2}$,
那么α=$\frac{π}{3}$,
故当α=$\frac{π}{3}$时,水渠中水的流失量最小.

点评 本题考查的知识点是函数的最值,直线与圆的位置关系,其中求出水与渠壁的接触面y的解析式,将实际问题转化为函数问题,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.对于平面α和两条直线m,n,下列命题中真命题是(  )
A.若m⊥α,m⊥n,则n∥αB.若m∥α,n∥α,则m∥n
C.若m,n与α所成的角相等,则m∥nD.若m?α,m∥n,且n在平面α外,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow a=(cos{23°},cos{67°}),\overrightarrow b=(cos{53°},cos{37°})$,则$\overrightarrow a•\overrightarrow b$=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个算法,其流程图如图所示,则输出结果是(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=sinx+sin(x+\frac{π}{2})$.
(1)求f(x)的最小正周期、最大值及取得最大值时x的取值集合;
(2)求f(x)的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个正方体的棱长为2cm,它的顶点都在一个球面上,则球的半径是(  )cm.
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a、b、c表示不同的直线,α、β、γ表示不同的平面,则下列判断正确的是(  )
A.若a⊥c,b⊥c,则a∥bB.若α⊥γ,β⊥γ,则α∥βC.若α⊥a,β⊥a,则α∥βD.若a⊥α,b⊥a,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若一扇形的面积为80π,半径为20,则该扇形的圆心角为72°(或$\frac{2π}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系中一定成立的是(  )
A.3c+3a=2B.3c+3a>2
C.3c+3a<2D.3c+3a与2的大小关系不确定

查看答案和解析>>

同步练习册答案