精英家教网 > 高中数学 > 题目详情

【题目】某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的倍.

(1)求的值;

(2)求样本的平均数;

(3)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

【答案】(1); (2)48; (3).

【解析】

(1)分析样本中产量在区间上的果树,再结合频率分布直方图的特征联立方程组求出结果

(2)由频率分布直方图取中间值来计算出平均数

(3)分别计算出在区间上的果树数量,运用概率知识求出结果

(1)样本中产量在区间(45,50]上的果树有(株),

样本中产量在区间(50,60]上的果树有(株)

则有

根据频率分布直方图可知

①②组成的方程组得

(2)平均数 .

(3)样本中产量在区间(50,55]上的果树有(株),产量在区间(55,60]上的果树有(株)

设“从样本中产量在区间(50,60]上的果树里随机抽取两株,产量在区间(55,60]上的果树至少有一株被抽中”为事件,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: 为参数),两曲线相交于两点.

1)写出曲线的直角坐标方程和直线的普通方程;

2)若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形, ,且.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,定义,且为常数),若.以下四个命题中为真命题的是__________.

不存在极值;②若的反函数为,且函数与函数有两个公共点,则;③若上是减函数,则实数的取值范围是;④若,则在的曲线上存在两点,使得过这两点的切线互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点M(﹣2,﹣1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.

(Ⅰ)求椭圆C的方程;

(Ⅱ)试判断直线PQ的斜率是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲乙两辆车去同一货场装货物,货场每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一车等待.已知甲、乙两车装货物需要的时间都为20分钟,倘若甲、乙两车都在某1小时内到达该货场,则至少有一辆车需要等待装货物的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有的把握认为“礼让斑马线”行为与驾龄有关?

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

参考公式及数据:

.

(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格.某校有800 名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图所示

(Ⅰ)求初赛分数在区间内的频率;

(Ⅱ)求获得复赛资格的人数;

(Ⅲ)据此直方图估算学生初赛成绩的平均数.

查看答案和解析>>

同步练习册答案