精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ),曲线处的切线方程为.

(Ⅰ)求 的值;

(Ⅱ)证明:

(Ⅲ)已知满足的常数为.令函数(其中是自然对数的底数, ),若的极值点,且恒成立,求实数的取值范围.

【答案】(1) .(2)详见解析;(3)

【解析】试题分析:

(1)由导函数与切线方程的关系可得 .

(2)利用题意构造新函数 ,结合新函数的性质即可证得

(3)由题意

时, 无极值,不符合题意;

时, 是函数的唯一极值点,也是它的唯一最大值点,可得 .

由题意考察函数,可得的取值范围是.

试题解析:

(Ⅰ)的导函数

由曲线处的切线方程为,知

所以 .

(Ⅱ)令 ,则

时, 单调递减;当时, 单调递增,

所以,当时, 取得极小值,也即最小值,该最小值为

所以,即不等式成立.

(Ⅲ)函数),则

时, ,函数内单调递增, 无极值,不符合题意;

时,由,得

结合 上的图象可知,关于的方程一定有解,其解为),且当时, 内单调递增;当时, 内单调递减.

是函数的唯一极值点,也是它的唯一最大值点,

也是上的唯一零点,即,则.

所以 .

由于恒成立,则,即,(*)

考察函数,则

所以内的增函数,且

又常数满足,即

所以, 是方程的唯一根,

于是不等式(*)的解为

又函数)为增函数,故

所以的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某理财公司有两种理财产品.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品

产品(其中

(Ⅰ)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围;

(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中直线BC1与平面BB1D1D所成角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S. ①当 时,S为四边形
②截面在底面上投影面积恒为定值
③不存在某个位置,使得截面S与平面A1BD垂直
④当 时,S与C1D1的交点满足C1R1=
其中正确命题的个数为

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果二面角α﹣L﹣β的大小是60°,线段AB在α内,AB与L所成的角为60°,则AB与平面β所成角的正切值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1的左右焦点分别为F1 , F2 , 直线l过椭圆的右焦点F2与椭圆交于A,B 两点, (Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为 的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面底面 ,点 分别是 的中点.

(1)证明: 平面

(2)若 ,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的二次方程x2+2mx+2m+1=0.
(1)若方程有两个正根,求m的取值范围.
(2)若方程有两根,其中一根在区间(﹣1,0)内,另一根在区间(1,3)内,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】支篮球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.有下列四个命题:

:恰有四支球队并列第一名为不可能事件; :有可能出现恰有两支球队并列第一名;

:每支球队都既有胜又有败的概率为 :五支球队成绩并列第一名的概率为.

其中真命题是

A. ,, B. ,, C. .. D. ..

查看答案和解析>>

同步练习册答案