精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别为内角A,B,C所对边的边长,且C=,a+b=λc(其中λ>1).

(1)若λ=时,证明:△ABC为直角三角形;

(2)若·λ2,且c=3,求λ的值.

【答案】(1)见解析;(2)2

【解析】

(1)利用正弦定理化简a+b=λc即得B=或B=,分析得到△ABC为直角三角形.(2)化

·λ2得ab=λ2,再结合余弦定理得到关于λ的值,解方程即得λ的值.

(1)证明:因为λ=,所以a+b=c,由正弦定理得sin A+sin B=sin C,

因为C=,所以sin B+sin,所以sin B+cos B=,则sin,所以B+或B+,B=或B=.

若B=,则A=,△ABC为直角三角形;

若B=,△ABC亦为直角三角形.

(2)解:若·λ2,则a·b=λ2,所以ab=λ2.

又a+b=3λ,由余弦定理知a2+b2-c2=2abcos C,即a2+b2-ab=c2=9,即(a+b)2-3ab=9,故9λ2λ2λ2=9,λ2=4,即λ=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:∥平面EFGH;

(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:R上定义运算x y=(1-x)y.不等式x1-a)x<1对任意实数x恒成立;命题Q:若不等式≥2对任意的x∈ N*恒成立.P∧ Q为假命题,P∨ Q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延误天数Y

0

2

6

10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(I)工期延误天数Y的均值与方差;
(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA平面ABC,AB⊥AC,PA=AC=3,AB=,BE=EC,AD=2DC.

(1)证明:DE⊥平面PAE;

(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足,且在区间上是增函数.,若方程在区间上有四个不同的根,则

A. -8 B. -4 C. 8 D. -16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA是南北方向的一条公路,OB是北偏东45°方向的一条公路,某风景区的一段边界为曲线C.为方便游客光,拟过曲线C上的某点分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy,则曲线符合函数y=x+ (1≤x≤9)模型,设PM=x,修建两条道路PM,PN的总造价为f(x)万元,题中所涉及的长度单位均为百米.

(1)求f(x)解析式;
(2)当x为多少时,总造价f(x)最低?并求出最低造价.

查看答案和解析>>

同步练习册答案