精英家教网 > 高中数学 > 题目详情
计算(1+i)2=(  )
A、2iB、-2i
C、2+2iD、2-2i
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数的运算法则即可得出.
解答: 解:原式=2i.
故选:A.
点评:本题考查了复数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若α的终边过点,(-1,2),则
sin(π-α)
sin(
π
2
+α)-cos(π+α)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=2
1
2
,b=(
1
2
2,c=log2
1
2
,d=log 
1
2
2,现在a,b,c,d这四个数中,值最大的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=3|x|的定义域为[a,b],值域为[3,9],则区间[a,b]的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,函数f(x)=(ax+2)lnx,g(x)=bx2+4x-5,且曲线y=f(x)与曲线y=g(x)在x=1处有相同的切线.
(1)求a,b的值;
(2)(2)证明:当x≠1时,曲线y=f(x)恒在曲线y=g(x)的下方;
(3)当x∈(0,k]时,不等式(2k+1)f(x)≤(2x+1)g(x)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

|2x+2|-|2x-2|≤a恒成立,则实数a的取值范围是(  )
A、(-∞,-4)
B、[4,+∞)
C、[-4,+∞)
D、(-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是(  )
A、
2
3
B、
4
5
C、
7
6
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1(f(x1)-f(x2))>x2(f(x1)-f(x2)),则称函数f(x)为“H函数”.下列函数是“H函数”的是(  )
A、y=x2
B、y=-ex+1
C、y=2x-sinx
D、y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
2
=1,
b
2
=2,(
a
-
b
)•
a
=0
,则
a
b
的夹角为
 

查看答案和解析>>

同步练习册答案