精英家教网 > 高中数学 > 题目详情
已知A、B是椭圆
x2
4
+
y2
3
=1
的左、右顶点,椭圆上异于A、B的两点C、D和x轴上一点P,满足
AP
=
1
3
AD
+
2
3
AC

(1)设△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4,求证:S1S3=S2S4
(2)设P点的横坐标为x0,求x0的取值范围.
(1)证明:∵
AP
=
1
3
AD
+
2
3
AC
,∴
AP
=
1
3
AD
+(1-
1
3
)
AC

AP
-
AC
=
1
3
AD
-
AC
),
CP
=
1
3
CD

∴C、D、P三点共线,且C、D在P点的两侧,
∵△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4
S1
S2
=
|
CP
|
|
PD
|
=
S4
S3
,∴S1S3=S2S4
(2)由(Ⅰ)知,C、D、P三点共线,且C、D在P点的两侧,且C、D异于A、B的两点,
∴-2<x0<2,且直线CD不平行于x轴,
设直线CD的方程为:x=my+x0
x=my+x0
x2
4
+
y2
3
=1
,得:(3m2+4)y2+6mx0y+3x02-12=0,
当-2<x0<2时,直线与椭圆有两个交点,
设C(x1,y1),D(x2,y2),
∴y1+y2=-
6mx0
3m2+4
,y1y2=
3x02-12
3m2+4

CP
=
1
3
CD
,∴y2=-2y1
联立三式,消去y1、y2得:-
72m2x02
(3m2+4)2
=
3x02-12
3m2+4

化简得:(27x02-12)m2=4(4-x02),
∵-2<x0<2,m2>0,∴27x02-12>0,
所以x0
2
3
或x0<-
2
3

综上知x0的取值范围是(-2,-
2
3
)∪(
2
3
,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段AB的端点B的坐标是(1,2),端点A在圆(x+1)2+y2=4上运动,点M是AB的中点.
(1)若点M的轨迹为曲线C,求此曲线的方程;
(2)设直线l:x+y+3=0,求曲线C上的点到直线l距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,4),离心率为
3
5

(1)求C的方程;
(2)求过点(3,0)且斜率为
4
5
的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
k-4
+
y2
k-6
=1
表示双曲线,q:过点M(2,1)的直线与椭圆
x2
5
+
y2
k
=1
恒有公共点,若p∧q为真命题,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
4
+y2=1的左、右顶点分别为A、B,圆x2+y2=4上有一动点P,P在x轴上方,C(1,0),直线PA交椭圆E于点D,连结DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面积S;
(Ⅱ)设直线PB,DC的斜率存在且分别为k1,k2,若k1=2k2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若
AM
=
1
2
MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆C1的长轴三等分,椭圆C1右焦点到右准线的距离为
2
4
,椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B.
(1)求椭圆C1的方程;
(2)若直线EA、EB分别与椭圆C1相交于另一个交点为点P、M.
①求证:直线MP经过一定点;
②试问:是否存在以(m,0)为圆心,
3
2
5
为半径的圆G,使得直线PM和直线AB都与圆G相交?若存在,请求出所有m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,右焦点为(2
2
,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(Ⅰ)求椭圆G的方程;
(Ⅱ)求△PAB的面积.

查看答案和解析>>

同步练习册答案