精英家教网 > 高中数学 > 题目详情
7.若平面向量$\overrightarrow b=(-4,x)$与向量$\overrightarrow a=(2,1)$平行,则$\overrightarrow b$=(  )
A.(-4,2)B.(-4,-2)C.(4,-2)D.(-4,2)或(-4,-2)

分析 根据向量的平行的条件,即可求出.

解答 解:∵平面向量$\overrightarrow b=(-4,x)$与向量$\overrightarrow a=(2,1)$平行,
∴-4×1=2x,
解得x=-2,
∴$\overrightarrow b$=(-4,-2),
故选:B.

点评 此题考查了两向量平行的坐标表示法及方程思想求解未知量x的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数g(x)的图象是函数f(x)=sin2x-$\sqrt{3}$cos2x的图象向右平移$\frac{π}{12}$个单位而得到的,则函数g(x)的图象的对称轴可以为(  )
A.直线x=$\frac{π}{4}$B.直线x=$\frac{π}{3}$C.直线x=$\frac{π}{2}$D.直线x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的通项公式an=3n-50,则前n项和Sn的最小值-392.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(1,cosθ),-$\frac{π}{2}$<θ<$\frac{π}{2}$.
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求θ;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知扇形的周长为30,当扇形的面积最大时,则它的半径R和圆心角α的值分别为(  )
A.5,1B.5,2C.$\frac{15}{2}$,1D.$\frac{15}{2}$,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.非空数集A如果满足:①0∉A;②若对?x∈A,有$\frac{1}{x}$∈A,则称A是“互倒集”.给出以下数集:
①{x∈R|x2+ax+1=0};  
②{x|x2-4x+1<0};  
③{y|y=$\frac{lnx}{x}$,x∈[$\frac{1}{e}$,1)∪(1,e]};
④{y|y=$\left\{\begin{array}{l}{2x+\frac{2}{5},x∈[0,1)}\\{x+\frac{1}{x},x∈[1,2]}\end{array}\right.$}.
其中“互倒集”的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}中a1=8,d≠0,且a1,a3,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{n(12-{a}_{n})}$(n∈N*),Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列各式的值:
(1)(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+${(0.002)}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0
(2)2${\;}^{-\frac{1}{2}}$+$\frac{(-4)^{0}}{\sqrt{2}}$+$\frac{1}{\sqrt{2}-1}$-$\sqrt{(1-\sqrt{5})^{0}}$•8$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x-1)=x2-4x.
(Ⅰ)求函数f(x)及f(2x+1)的解析式;
(Ⅱ)(i)若f(x)在区间[2m,m+1]上不具有单调性,求实数m的取值范围;
(ii)若对于任意的x0∈[0,2],总存在t∈{x|$\frac{2a}{x+5+a}$≥1},使得f(2x0+1)=t成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案