精英家教网 > 高中数学 > 题目详情
椭圆的左、右焦点为,直线x=m过且与椭圆相交于A,B两点,则的面积等于          .
3

试题分析:椭圆中,,即m=c=1,代人椭圆方程,得,所以,的面积等于3.
点评:基础题,涉及椭圆的“焦点三角形”问题,往往要运用椭圆的定义。本题特殊可通过计算直角三角形面积计算。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。

(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过原点的直线与椭圆相交与AB两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知,O为坐标原点,动点E满足:

(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的右焦点为,则该双曲线的渐近线方程为(    )                         
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线C:被直线l:截得的弦长为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线所围成的封闭图形的面积为,曲线的内切圆半径为.记为以曲线与坐标轴的交点为顶点的椭圆.
(1)求椭圆的标准方程;
(2)设是过椭圆中心的任意弦,是线段的垂直平分线.上异于椭圆中心的点.
(i)若为坐标原点),当点在椭圆上运动时,求点的轨迹方程;
(ii)若与椭圆的交点,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知点A(0,2),直线l:x+y-4=0,点B(x,y)是圆C:x2+y2-2x-1=0上的动点,AD⊥l,BE⊥l,垂足分别为D、E,则线段DE的最大值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线上不存在点P使得右焦点F关于直线OP(O为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为
A.B.C.D.

查看答案和解析>>

同步练习册答案