精英家教网 > 高中数学 > 题目详情

【题目】设离心率为 的椭圆 的左、右焦点为 , PE上一点, , 内切圆的半径为 .

(1)E的方程;

(2)矩形ABCD的两顶点CD在直线AB在椭圆E,若矩形ABCD的周长为 , 求直线AB的方程.

【答案】(1);(2.

【解析】试题分析:

(1)要求E的方程,需求出。由直角三角形内切圆半径公式可得,所以依题意有,由此解得,从而,由此可得椭圆的方程.

(2)由于ABCD为矩形,所以有,所以,设直线的方程为,代入椭圆的方程,整理得,再由弦长公式得出,又由,由平行线距离公式可得,由,可将化简为,再有由已知可得

即可解出得出直线AB的方程.

试题解析:

(1)直角三角形内切圆的半径

依题意有,由此解得,从而

故椭圆的方程为

(2)设直线的方程为,代入椭圆的方程,整理得,由

,则

,由

所以由已知可得,即

整理得,解得(舍去)

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若,且,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C对应的边分别a,b,c,且acosC,bcosB,ccosA成等差数列,则角B等于(
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的函数f(x)满足下面三个条件:
①对任意正数a,b,都有f(a)+f(b)=f(ab);
②当x>1时,f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)试用单调性定义证明:函数f(x)在(0,+∞)上是减函数;
(III)求满足f(log4x)>2的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲、乙两位同学要测量河对岸A,B两点间的距离,今沿河岸选取相距40米的C,D两点,测得∠ACB=60°,∠BCD=45°,∠ADC=30°,∠CDB=90°求A,B两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定义域;
(2)判断函数f(x)+g(x)的奇偶性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知直线l经过点P(4,1),且在两坐标轴上的截距相等,求直线l的方程;
(2)已知直线l经过点P(3,4),且直线l的倾斜角为θ(θ≠90°),若直线l经过另外一点(cosθ,sinθ),求此时直线l的方程.

查看答案和解析>>

同步练习册答案