精英家教网 > 高中数学 > 题目详情
如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=    .
a
∵平面ABCD∥平面A1B1C1D1,∴MN∥PQ.
∵M,N分别是A1B1,B1C1的中点,AP=,∴CQ=,从而DP=DQ=,∴PQ=a.
【误区警示】本题易忽视平面与平面平行的性质,不能正确找出Q点的位置,从而无法计算或计算出错,造成失分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.

证明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN.

(1)证明对任意a∈(0,),总有MN∥平面DCC1D1.
(2)当a为何值时,MN的长最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知在正方体ABCDA1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设四面体的六条棱的长分别为1,1,1,1, 和a,且长为a的棱与长为的棱异面,则a的取值范围是(  )
A.(0,)B.(0,)
C.(1,)D.(1,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m,n和平面α,则m∥n的一个必要不充分条件是(  )
A.m∥α,n∥αB.m⊥α,n⊥α
C.m∥α,n?αD.m,n与α成等角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线均不在平面内,给出下列命题:
①若,则;②若,则;③若,则;④若,则.则其中正确命题的个数是(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH上或其内部运动,且使MN⊥AC.

对于下列命题:①点M可以与点H重合;②点M可以与点F重合;③点M可以在线段FH上;④点M可以与点E重合.其中真命题的序号是________(把真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,MPD的中点,AB=2,∠BAD=60°.

(1)求证:OM∥平面PAB
(2)求证:平面PBD⊥平面PAC
(3)当四棱锥P-ABCD的体积等于时,求PB的长.

查看答案和解析>>

同步练习册答案