精英家教网 > 高中数学 > 题目详情
13.已知:空间四边形ABCD如图所示,E、F分别是AB、AD的中点,G、H分别是BC,CD上的点,且$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,则直线FH与直线EG(  )
A.平行B.相交C.异面D.垂直

分析 由已知EF为三角形ABD的中位线,从而EF∥BD且EF=$\frac{1}{2}$BD,由$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,得在四边形EFHG中,EF∥HG,即E,F,G,H四点共面,且EF≠HG,由此能得出结论.

解答 解::∵四边形ABCD是空间四边形,E、F分别是AB、AD的中点,
∴EF为三角形ABD的中位线
∴EF∥BD且EF=$\frac{1}{2}$BD
又∵$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,
∴△CHG∽△CDB,且HG∥BD,HG=$\frac{1}{3}$BD
∴在四边形EFHG中,EF∥HG
即E,F,G,H四点共面,且EF≠HG,
∴四边形EFGH是梯形,
∴直线FH与直线EG相交,
故选B.

点评 本题考查的知识点是平行线分线段成比例定理,是基础题,根据已知条件,判断出EF∥HG且EF≠HG,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知全集U={x|x≤4},集合A={x|-2<x<3},集合B={x|-3≤x≤2},求A∩B,∁U(A∪B),(∁UA)∪B,A∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB.设直线BD、AB的斜率分别为k1、k2,若$\frac{k_1}{k_2}=\frac{3}{4}$,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过抛物线x2=4y的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别为p,q,则$\frac{1}{p}+\frac{1}{q}$等于(  )
A.$\frac{1}{2}$B.2C.1D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>1}\\{(4-\frac{a}{2})x-1,x≤1}\end{array}\right.$在(-∞,+∞)上单调递增,则实数a的取值范围为(  )
A.[4,8 )B.(4,8]C.(4,8)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为3,其渐近线与圆x2+y2-6y+m=0相切,则m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足$\left\{{\begin{array}{l}{x+y≤6}\\{x≥1}\\{y≥3}\end{array}}\right.$,则$\frac{y}{x}$的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=log2(x-2),若实数m,n满足f(m)+f(n)=3,则m+n的最小值为(  )
A.5B.7C.4+4$\sqrt{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输入的x=2,n=4,则输出的s等于(  )
A.94B.99C.45D.203

查看答案和解析>>

同步练习册答案