【题目】已知圆的圆心为,直线.
(1)求圆心的轨迹方程;
(2)若,求直线被圆所截得弦长的最大值;
(3)若直线是圆心下方的切线,当在上变化时,求的取值范围.
【答案】(1);(2);(3).
【解析】试题分析:(1)由圆的方程,可得圆的圆心坐标为,即可得到圆心的轨迹方程;
(2)将圆的方程转化为圆的标准方程,得到圆心坐标和半径,再求得圆心到直线的距离,由圆的弦长公式,得到弦长的函数关系式,即可求解弦长的最大值;
(3)由直线与圆相切,建立与的关系,,在由点在直线的上方,去掉绝对值,将转化为二次函数求解即可.
试题解析:
(1)圆的圆心坐标为.
所以圆心的轨迹方程为.
(2)已知圆的标准方程是.
则圆心的坐标是,半径为.
直线的方程化为:,则圆心到直线的距离是,
设直线被圆所截得弦长为,由圆弦长、圆心距和圆的半径之间关系是:
,
∵,∴当时,的最大值为.
(3)因为直线与圆相切,则有.
即.
又点在直线上方,∴,即,
∴,∴.
∵,∴,
∴.
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;
(3)当二面角的大小为时,求PC与底面ABCD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=m6x﹣4x , m∈R.
(1)当m= 时,求满足f(x+1)>f(x)的实数x的范围;
(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程有实根,求实数的取值范围;
(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足:对任意的x1 , x2∈(﹣∞,0),有 ,则( )
A.f(﹣4)<f(3)<f(﹣2)
B.f(﹣2)<f(3)<f(﹣4)
C.f(3)<f(﹣2)<f(﹣4)
D.f(﹣4)<f(﹣2)<f(3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com