精英家教网 > 高中数学 > 题目详情
执行如图所示的程序框图,则输出S的值为(  )
A、3B、-6C、10D、-15
考点:循环结构
专题:计算题,算法和程序框图
分析:根据程序框图判断,程序的运行功能是求S=-11+22-32+42-52,计算可得答案.
解答: 解:由程序框图知,程序的运行功能是求S=-11+22-32+42-…
∵当i=6时,不满足条件i<6,程序运行终止,输出s═-11+22-32+42-52=-15.
故选:D.
点评:本题考查了循环结构的程序框图,解答此类问题的关键是判断程序框图的功能.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m、n、l是三条不同的直线,α、β、γ是三个不同的平面,给出以下命题:
①若m?α,n∥α,则m∥n;
②若m?α,n?β,α⊥β,α∩β=l,m⊥l,则m⊥n;
③若n∥m,m?α,则n∥α; 
④若α∥γ,β∥γ,则α∥β.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n为不同的直线,α,β为不同的平面,有如下四个命题:
①若m∥α,n?α,则m∥n;
②若m∥α,m∥β,则α∥β;
③若α⊥β,m⊥α,则m∥β;
④若m⊥α,n∥β且α∥β,则m⊥n.
其中错误命题的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则(  )
A、α与β相交,且交线平行于l
B、α与β相交,且交线垂直于l
C、α∥β,且l∥α
D、α⊥β,且l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是(  )
A、8B、10C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

节能灯的质量通过其正常使用时间来衡量,使用时间越长,表明质量越好,且使用时间大于或等于6千小时的产品为优质品.现用A,B两种不同型号的节能灯做实验,各随机抽取部分产品作为样本,得到实验结果的频率直方图如图所示:
若以上述实验结果中使用时间落入各组的频率作为相应的概率.
(Ⅰ)现从大量的A,B两种型号节能灯中各随机抽取两件产品,求恰有两件是优质品的概率;
(Ⅱ)已知A型节能灯的生产厂家对使用时间小于6千小时的节能灯实行“三包”.通过多年统计发现,A型节能灯每件产品的利润y(单位:元)与使用时间t(单位:千小时)的关系式如下表:
使用时间t(单位:千小时) t<4 4≤t<6 t≥6
每件产品的利润y(单位:元) -20 20 40
若从大量的A型节能灯中随机抽取2件,其利润之和记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴是短轴的两倍,点A(
3
1
2
)
在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列,记△ABO的面积为S.
(1)求椭圆C的方程.
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+1(a>0)
(Ⅰ)若a=2,求函数f(x)在(e,f(e))处的切线方程;
(Ⅱ)当x>0时,求证:f(x)-1≥a(1-
1
x
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过定点(2,0)的直线与抛物线x2=y相交于A(x1,y1),B(x2,y2)两点.若x1,x2是方程x2+xsinα-cosα=0的两个不相等实数根,则tanα的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

同步练习册答案