精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+ax2-12x的导函数为f′(x),若f′(x)的图象关于y轴对称.
(I)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的极值.
(I)f′(x)=3x2+2ax-12,∵f′(x)的图象关于y轴对称,∴a=0.
∴f(x)=x3-12x.
(II)由(I)可得f′(x)=3x2-12=3(x+2)(x-2).
令f′(x)=0,解得x=±2.列表如下:
x(-∞,-2)-2(-2,2)2(2,+∞)
f′(x)+0-0+
f(x)单调递增极大值单调递减极小值单调递增
由表格可知:当x=-2时,函数f(x)取得极大值,且f(-2)=16;当x=2时,函数f(x)取得极小值,
且f(2)=-16.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值为-
4
3

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的极小值为,极大值为一定小于吗?请举例说明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(t,f(t))处的切线方程
(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-x2,x=1是f(x)的一个极值点.
(1)求a的值;
(2)若方程f(x)+m=0在[
1
e
,e]内有两个不等实根,求m的取值范围(其中e为自然对数的底数);
(3)令g(x)=f(x)+3x,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),求证:
5
2
<x2-x1
7
2
.(参考数据:ln2≈0.7 e≈2.7)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ax2-lnx,x∈(0,e],其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间与极值;
(Ⅱ)是否存在实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=excosx的图象在点(0,f(0))处的切线倾斜角的余弦值为(  )
A.-
5
5
B.
5
5
C.
2
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a是实数,函数f(x)=x2(x-a)
(1)如果f′(1)=3,求a的值;
(2)在(1)的条件下,求曲线y=f(x)在点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线y=x3上的点P处的切线的斜率为3,则P点的坐标为(  )
A.(-2,-8)B.(-1,-1)C.(-2,-8)或(2,8)D.(-1,-1)或(1,1)

查看答案和解析>>

同步练习册答案