精英家教网 > 高中数学 > 题目详情
(2012•香洲区模拟)如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=(  )
分析:根据图象的规律可得出通项公式an,根据数列{
9
anan+1
}的特点可用列项法求其前n项和的公式,而
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
是前2011项的和,代入前n项和公式即可得到答案.
解答:解:每个边有n个点,把每个边的点数相加得3n,这样角上的点数被重复计算了一次,故第n个图形的点数为3n-3,即an=3n-3.
令Sn=
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
anan+1
=
1
1×2
+
1
2×3
+…+
1
(n-1)n
=1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=
n-1
n

9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=
2011
2012

故选B.
点评:本题主要考查简单的和清推理,求等差数列的通项公式和用裂项法对数列进行求和问题,同时考查了计算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知向量
a
b
满足|
a
|=1,|
b
|=
2
a
b
=1
,则
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知椭圆C的焦点在x轴上,中心在原点,离心率e=
3
3
,直线l:y=x+2与以原点为圆心,椭圆C的短半轴为半径的圆O相切.
(I)求椭圆C的方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1,A2,点M是椭圆上异于Al,A2的任意一点,设直线MA1,MA2的斜率分别为kMA1kMA2,证明kMA1kMA2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)如图,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=4,BC=4,BB1=3,M、N分别是B1C1和AC的中点.
(1)求异面直线AB1与C1N所成的角;
(2)求三棱锥M-C1CN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•香洲区模拟)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定义f(x)=
m
n

(1)求函数f(x)的表达式,并求其单调增区间;
(2)在锐角△ABC中,角A、B、C对边分别为a、b、c,且f(A)=1,bc=8,求△ABC的面积.

查看答案和解析>>

同步练习册答案