精英家教网 > 高中数学 > 题目详情

【题目】在万众创新的大经济背景下,某成都青年面包店推出一款新面包,每个面包的成本价为元,售价为元,该款面包当天只出一炉(一炉至少个,至多个),当天如果没有售完,剩余的面包以每个元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近天的日需求量(单位:个),整理得下表:

日需求量

频数

(1)根据表中数据可知,频数与日需求量(单位:个)线性相关,求关于的线性回归方程;

(2)以天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数为,记当日这款新面包获得的总利润为(单位:元).求的分布列及其数学期望.

相关公式:

【答案】(1);(2)详见解析.

【解析】

1)先求,代入公式分别求,(2)先确定随机变量取法,再分别求对应概率,列表得分布列,最后根据期望公式求结果.

(1)

关于的线性回归方程为.

(2)若日需求量为个,则

若日需求量为个,则

若日需求量为个,则

若日需求量为个或个,则

故分布列为

(元)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左.右焦点分别为为坐标原点.

(1)若斜率为的直线交椭圆于点,若线段的中点为,直线的斜率为,求的值;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线分别与椭圆交于点,设直线的斜率为,直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求证:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰三角形△ABC的两腰ABAC所在直线的方程分别为是底边BC上一点,求:

(1)底边BC所在直线的方程;

(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.

注:年份代码分别表示对应年份.

1)由折线图看出,可用线性回归模型拟合的关系,请用相关系数线性相关较强)加以说明;

2)建立的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.

(参考数据).

(参考公式)相关系数,在回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….记作数列,若数列的前项和为,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形,的中点,平面的中点,

1)证明:平面

2)如果二面角的正切值为2,求的值.

查看答案和解析>>

同步练习册答案