精英家教网 > 高中数学 > 题目详情

如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?

乙船每小时航行海里.

解析试题分析:连接,依题意可知,求得的值,推断出是等边三角形,进而求得,在中,利用余弦定理,可得,从而可求出的值,最终可求得乙船的速度.
试题解析:如图,连结,由已知,又是等边三角形,,由已知,,在中,由余弦定理,.因此,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.

考点:应用余弦定理解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设

(1)试用表示的面积;
(2)求八角形所覆盖面积的最大值,并指出此时的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别是,已知.
(1)若的面积等于,求
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中内角的对边分别为,已知.
(1)求的值;(2)若中点,且的面积为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记

(1)问当为多少时,所建造的三角形露天活动室的面积最大?
(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)写出如何由函数的图像变换得到的图像;
(2)在中,角所对的边分别是,若,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,分别为角A、B、C的对边,=3,△ABC的面积为6,
,D为△ABC内任一点,点D到三边距离之和为
(1)求:角A的正弦值;
(2)求:边
(3)求:的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角对应的边分别是,已知.
(1)求角的大小;
(2)若的面积,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C的对边分别为a,b,c.已知.
(Ⅰ)求的值;
(Ⅱ)若cosB=,求的面积.

查看答案和解析>>

同步练习册答案