精英家教网 > 高中数学 > 题目详情
11.若角α的终边过点P(2cos600°,-2sin600°),则sinα=$\frac{\sqrt{3}}{2}$.

分析 先利用诱导公式,确定角α的终边过点P(-1,$\sqrt{3}$),再求出sinα.

解答 解:cos600°=cos240°=-cos60°=-$\frac{1}{2}$,sin600°=sin(720°-120°)=sin(-120°)=-sin120°=-$\frac{\sqrt{3}}{2}$,
∴角α的终边过点P(-1,$\sqrt{3}$),
∴sinα=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查诱导公式,任意角的三角函数的定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.点A(1,-2)、B(2,1)所对应的复数分别是z1、z2,O是坐标原点.
(1)求复数z=2z1+z2及模|z|;
(2)判断复数1+z1•$\overline{{z}_{2}}$所对应的点所在的象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A,B,C是圆O:x2+y2=1上不同的三个点,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,存在实数λ,μ满足$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则点(λ,μ)与圆O的位置关系是(  )
A.在圆O外B.在圆O上C.在圆O内D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知递增数列{an}的通项公式是an=n2+kn+4,则实数k的取值范围是(  )
A.(-2,+∞)B.(-3,+∞)C.(-3,-2)D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cos($\frac{π}{4}$+α)=$\frac{3}{5}$,且$\frac{7}{12}$π<α<$\frac{7}{4}$π,求$\frac{sin2α(1+tanα)}{1-tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简:
(1)sin(π+α)cos(-α)+sin(2π-α)cos(π-α);
(2)sinαcos(π+α)tan(-π-α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设直线l:y=kx+1与曲线f(x)=ax2+2x+b+ln(x+1)(a>0)相切于点P(0,f(0)).
(1)求b,k的值;
(2)若直线l与曲线y=f(x)有且只有一个公共点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xoy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(-1,1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的方程为2x+y+1=0.

查看答案和解析>>

同步练习册答案