精英家教网 > 高中数学 > 题目详情

【题目】(2016·山东)f(x)xlnxax2(2a1)xa∈R.

(1)g(x)f′(x),求g(x)的单调区间;

(2)已知f(x)x1处取得极大值,求实数a的取值范围.

【答案】(1)当a≤0时,g(x)的单调递增区间为(0,+∞);当a0时,g(x)的单调递增区间为,单调递减区间为;(2)a.

【解析】试题分析:()求导数

可得

从而

讨论当时,当时的两种情况即得.

)由()知, .分以下情况讨论:时,时,时,时,综合即得.

试题解析:()由

可得

时, 时, ,函数单调递增;

时, 时, ,函数单调递增,

时, ,函数单调递减.

所以当时,函数单调递增区间为

时,函数单调递增区间为,单调递减区间为.

)由()知, .

时, 单调递减.

所以当时, 单调递减.

时, 单调递增.

所以x=1处取得极小值,不合题意.

时, ,由()知内单调递增,

可得当当时, 时,

所以在(0,1)内单调递减,在内单调递增,

所以x=1处取得极小值,不合题意.

时,即时, 在(0,1)内单调递增,在内单调递减,

所以当时, 单调递减,不合题意.

时,即,当时, 单调递增,

时, 单调递减,

所以fx)在x=1处取得极大值,合题意.

综上可知,实数a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点

(Ⅰ)求证:

(Ⅱ)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB1AE2F是线段BC上一点,直线BC与平面ABD所成角为30°CE∥平面ADF.

(1)试确定F的位置;

(2)求三棱锥ACDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是圆O的直径CD是圆上不同两点CDABHACADPA⊥圆O所在平面.

()求证:PBCD

()PBPBACADH到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(xy)的轨迹方程是yf(x),则对函数yf(x)有下列判断:

①若-2≤x≤2,则函数yf(x)是偶函数;

②对任意的x∈R,都有f(x2)f(x2)

③函数yf(x)在区间[2,3]上单调递减;

④函数yf(x)在区间[4,6]上是减函数.

其中判断正确的序号是________(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,f(x1)为奇函数,f(0)0,当x(01]时,f(x)log2x,则在区间(89)内满足方程f(x)2的实数x(  )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1中,E、F分别是ABAA1的中点.

求证:(1)E、C、D1、F四点共面;

(2)CE、D1F、DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的准线方程为x=-1,过定点M(m,0)(m>0)作斜率为k的直线l交抛物线C于A,B两点,E是M点关于坐标原点O的对称点,若直线AE和BE的斜率分别为k1,k2,则k1+k2________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线M的参数方程为 (θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(其中t为常数).

(Ⅰ)若曲线N与曲线M只有一个公共点,求t的值;

(Ⅱ)当t=-1时,求曲线M上的点与曲线N上的点的最小距离.

查看答案和解析>>

同步练习册答案