【题目】(2016·山东)设f(x)=xlnx-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
【答案】(1)当a≤0时,g(x)的单调递增区间为(0,+∞);当a>0时,g(x)的单调递增区间为,单调递减区间为;(2)a>.
【解析】试题分析:(Ⅰ)求导数
可得,
从而,
讨论当时,当时的两种情况即得.
(Ⅱ)由(Ⅰ)知, .分以下情况讨论:①当时,②当时,③当时,④当时,综合即得.
试题解析:(Ⅰ)由
可得,
则,
当时, 时, ,函数单调递增;
当时, 时, ,函数单调递增,
时, ,函数单调递减.
所以当时,函数单调递增区间为;
当时,函数单调递增区间为,单调递减区间为.
(Ⅱ)由(Ⅰ)知, .
①当时, , 单调递减.
所以当时, , 单调递减.
当时, , 单调递增.
所以在x=1处取得极小值,不合题意.
②当时, ,由(Ⅰ)知在内单调递增,
可得当当时, , 时, ,
所以在(0,1)内单调递减,在内单调递增,
所以在x=1处取得极小值,不合题意.
③当时,即时, 在(0,1)内单调递增,在内单调递减,
所以当时, , 单调递减,不合题意.
④当时,即,当时, , 单调递增,
当时, , 单调递减,
所以f(x)在x=1处取得极大值,合题意.
综上可知,实数a的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是线段BC上一点,直线BC与平面ABD所成角为30°,CE∥平面ADF.
(1)试确定F的位置;
(2)求三棱锥A-CDF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB是圆O的直径,C,D是圆上不同两点,且CD∩AB=H,AC=AD,PA⊥圆O所在平面.
(Ⅰ)求证:PB⊥CD;
(Ⅱ)若PB=,∠PBA=,∠CAD=,求H到平面PBD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,放置的边长为1的正方形PABC沿x轴滚动,点B恰好经过原点.设顶点P(x,y)的轨迹方程是y=f(x),则对函数y=f(x)有下列判断:
①若-2≤x≤2,则函数y=f(x)是偶函数;
②对任意的x∈R,都有f(x+2)=f(x-2);
③函数y=f(x)在区间[2,3]上单调递减;
④函数y=f(x)在区间[4,6]上是减函数.
其中判断正确的序号是________.(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方程f(x)+2=的实数x为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB和AA1的中点.
求证:(1)E、C、D1、F四点共面;
(2)CE、D1F、DA三线共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的准线方程为x=-1,过定点M(m,0)(m>0)作斜率为k的直线l交抛物线C于A,B两点,E是M点关于坐标原点O的对称点,若直线AE和BE的斜率分别为k1,k2,则k1+k2=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线M的参数方程为 (θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(其中t为常数).
(Ⅰ)若曲线N与曲线M只有一个公共点,求t的值;
(Ⅱ)当t=-1时,求曲线M上的点与曲线N上的点的最小距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com