精英家教网 > 高中数学 > 题目详情
1.用二分法求函数f(x)在区间[0,2]上零点的近似解(精确到0.01),若f(0)f(2)<0,取区间中点x1=1,计算得f(0)f(x1)<0,则此时可以判定零点x0∈(0,1)(填区间)

分析 本题考查的是二分法求函数的近似区间的问题.在解答时,要充分利用条件所给的计算结果,结合二分法的分析规律即可获得问题的解答.

解答 解:由题意可知:对于函数y=f(x)在区间[0,2]上,
有f(0)•f(2)<0,
利用函数的零点存在性定理,所以函数在(0,2)上有零点.
取区间的中点中点x1=1,
∵计算得f(0)•f(x1)<0,
∴利用函数的零点存在性定理,函数在(0,1)上有零点.
故答案为:(0,1).

点评 本题考查的是二分法求函数的近似区间的问题.在解答的过程当中充分体现了二分法解答问题的规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是(  )
A.AC⊥BDB.AC∥截面PQMN
C.AC=BDD.异面直线PM与BD所成的角为45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,已知cos(A-B)•cosB-sin(A-B)•sinB=0,则△ABC是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,则a=(  )
A.4B.$\sqrt{3}$C.$2\sqrt{3}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a、b为两条不同的直线,α为一个平面,下列命题中为真命题的是(  )
A.若a∥b,a∥α,则b∥αB.若a⊥b,a∥α,则b⊥αC.若a∥b,a⊥α,则b⊥αD.若a⊥b,a⊥α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知θ为第三象限的角,且f(θ)=$\frac{{sin(θ-\frac{5π}{2})•cos(\frac{3π}{2}+θ)•tan(3π-θ)}}{sin(-θ-π)•tan(-π-θ)}$,
(1)化简f(θ);
(2)若$cos(θ-\frac{3π}{2})=\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanα=2,求解下列各式
(1)$\frac{4cosα+sinα}{4cosα-sinα}$
(2)sinαcosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若平面α,β垂直,则下面可以作为这两个平面的法向量的是(  )
A.$\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(-3,1,1)B.$\overrightarrow{{n}_{1}}$=(1,1,2),$\overrightarrow{{n}_{2}}$=(-2,1,1)
C.$\overrightarrow{{n}_{1}}$=(1,1,1),$\overrightarrow{{n}_{2}}$=(-1,2,1)D.$\overrightarrow{{n}_{1}}$=(1,2,1),$\overrightarrow{{n}_{2}}$=(0,-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.语文、数学、英语共三本课本放成一摞,语文课本与数学课本恰好相邻放置的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案