精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线过点,直线过点与抛物线交于 两点.点关于轴的对称点为,连接.

(1)求抛物线线的标准方程;

(2)问直线是否过定点?若是,求出定点坐标;若不是,请说明理由.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1)利用点的坐标在曲线上,代入求解即可(2)设直线l的方程为y=kx﹣1,又设A(x1,y1),B(x2,y2),则A'(﹣x1,y1),联立直线与抛物线方程,利用韦达定理以及判别式,求出直线的斜率,推出直线方程,利用直线系求解即可.

解析:

(1)将点代入抛物线的方程得,

.

所以,抛物线的标准方程为.

(2)设直线的方程为,又设 ,则.由.

.

所以.

于是直线的方程为

所以.

时,

所以直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:

x

6

8

10

12

y

2

3

5

6

1)请在图中画出上表数据的散点图;

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).

)求椭圆C的方程;

)设点P是直线x=﹣4x轴的交点,过点P的直线l与椭圆C相交于MN两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若函数恰有个不同的零点,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两焦点在轴上,且短轴的两个顶点与其中一个焦点的连线构成斜边为的等腰直角三角形.

(1)求椭圆的方程;

(2)动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以线段为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为56的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.

1)求这4个人中恰有1人去淘宝网购物的概率;

2)用,分别表示这4个人中去淘宝网和京东商城购物的人数,,求随机变量的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市为调查会员某年度上半年的消费情况制作了有奖调查问卷发放给所有会员,并从参与调查的会员中随机抽取名了解情况并给予物质奖励.调查发现抽取的名会员消费金额(单位:万元)都在区间内,调查结果按消费金额分成组,制作成如下的频率分布直方图.

(1)求该名会员上半年消费金额的平均值与中位数;(以各区间的中点值代表该区间的均值)

(2)现采用分层抽样的方式从前组中选取人进行消费爱好调查,然后再从前组选取的人中随机选人,求这人都来自第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是(  )

A.甲的物理成绩领先年级平均分最多

B.甲有2个科目的成绩低于年级平均分

C.甲的成绩从高到低的前3个科目依次是地理、化学、历史

D.对甲而言,物理、化学、地理是比较理想的一种选科结果

查看答案和解析>>

同步练习册答案