精英家教网 > 高中数学 > 题目详情
10.已知圆C的方程为:x2+y2=9,过圆C上一动点M作平行于y轴的直线m,设m与x轴的交点为N,若向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,则动点Q的轨迹方程是$\frac{x^2}{4}+{y^2}=9$.

分析 设Q(x,y),M(s,t),则N(0,t),由于向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,利用向量相等可得$\left\{\begin{array}{l}{x=s}\\{y=2t}\end{array}\right.$,解出s,t再代入圆的方程即可.

解答 解:设Q(x,y),M(s,t),则N(0,t),s2+t2=9.(*)
∵向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,(O为原点),∴$\left\{\begin{array}{l}{x=s}\\{y=2t}\end{array}\right.$,
解得$\left\{\begin{array}{l}{s=x}\\{t=y}\end{array}\right.$,代入(*)化为$\frac{x^2}{4}+{y^2}=9$.
故答案为$\frac{x^2}{4}+{y^2}=9$.

点评 本题考查了轨迹方程,考查代点法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大排列顺序是(  )
A.m<p<q<nB.p<m<q<nC.m<p<n<qD.p<m<n<q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在正方体ABCD-A1B1C1D1中,下列几种说法正确的是(  )
A.A1B∥D1BB.AC1⊥B1C
C.A1B与平面DBD1B1成角为45°D.A1B,B1C成角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A(4,0),抛物线C:x2=8y的焦点为F,射线FA与抛物线和它的准线分别交于点M和N,则|FM|:|MN|=1:$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线l,l与离心率为e的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的两条渐近线的交点分别为B,C.若xB,xC,xF分别表示B,C,F的横坐标,且$x_F^2=-{x_B}•{x_C}$,则e=(  )
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的两个焦点分别为F1,F2,点P是椭圆上任意一点,若|PF1|=4,则|PF2|=(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},则A∩∁UB=(  )
A.{3,6}B.{5}C.{2,4}D.{2,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$,则它的渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{4}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{\sqrt{2}}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:m,n∈N*,函数f(x)=(1-x)m+(1-x)n
(1)当m=n+1时,f(x)展开式中x2的系数是25,求n的值;
(2)当m=n=7时,f(x)=a7x7+a6x6+…+a1x+a0
(i)求a0+a2+a4+a6
(ii)$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{7}}{{2}^{7}}$.

查看答案和解析>>

同步练习册答案