精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,O为坐标原点.已知曲线C上任意一点P(x,y)(其中x≥0)到定点F(1,0)的距离比它到y轴的距离大1,直线l与曲线C相交于不同的A,B两点.
(1)求曲线C的轨迹方程;
(2)若直线l经过点F(1,0),求数学公式的值;
(3)若数学公式,证明直线l必过一定点,并求出该定点.

解:(1)依题意知,动点P到定点F(1,0)的距离等于P到直线x=-1的距离,
∴曲线C是以原点为顶点,F(1,0)为焦点的抛物线
,∴p=2
∴曲线C方程是y2=4x
(2)当l平行于y轴时,其方程为x=1,由解得A(1,2)、B(1,-2)
此时
当l不平行于y轴时,设其斜率为k,则由得k2x2-(2k2+4)x+k2=0
设A(x1,y1),B(x2,y2),则有x1x2=1,
==
(3)设l:x=ty+b代入抛物线y2=4x消去x,得y2-4ty-4b=0
设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4b.

=-4bt2+4bt2+b2-4b=b2-4b.
令b2-4b=-4,∴b2-4b+4=0,∴b=2,
∴直线l过定点(2,0).
分析:(1)依题意知,动点P到定点F(1,0)的距离等于P到直线x=-1的距离,曲线C是以原点为顶点,F(1,0)为焦点的抛物线,由此可求曲线C方程;
(2)当l平行于y轴时,其方程为x=1,此时;当l不平行于y轴时,设l的方程与抛物线方程联立,利用韦达定理及向量的数量积,可得的值;
(3)设l:x=ty+b代入抛物线y2=4x消去x,得y2-4ty-4b=0,利用韦达定理及,可得b的值,从而可得结论.
点评:本题考查抛物线的定义,考查向量的数量积,考查直线与抛物线的位置关系,解题的关键是确定抛物线的方程,联立方程,利用韦达定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案