精英家教网 > 高中数学 > 题目详情
8.如图,在五面体ABCDE中,点O是平行四边形ABCD的对角线的交点,棱$EF\underline{\underline{∥}}\frac{1}{2}BC$
求证:FO∥平面CDE.

分析 要证明FO∥平面CDE,在平面CDE中:取CD中点M,连接OM.证明FO∥EM即可;

解答 证明:取CD中点M,连接OM,连接EM,
∵在矩形ABCD中,OM$\stackrel{∥}{=}$$\frac{1}{2}$BC,又EF$\stackrel{∥}{=}$$\frac{1}{2}$BC,
∴可得:EF$\stackrel{∥}{=}$OM,
∴四边形EFOM为平行四边形.
∴FO∥EM.
又因为FO?平面CDE,且EM?平面CDE,
∴FO∥平面CDE.

点评 本题考查直线与平面平行、直线与平面垂直等基础知识,考查空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若命题ρ:$\sqrt{1-sin2x}$=sinx-cosx为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上的点到F2的最近距离为4,最远距离为16.
(1)求椭圆的方程;
(2)P为该椭圆上一点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,求证:
(1)g(2x)=[g(x)]2+[f(x)]2
(2)求函数y=[f(x)]2+mg(x)最小值h(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图程序是求10个数的平均数,则在横线上应填写的条件为(  )
A.i<1B.i>9C.i>10D.i<11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知R为实数集,函数f(x)=lg(x2-2x-15)的定义域是集合M,集合P={x|(x-a)(x-8)≤0}.
(1)若M∪P=R,求实数a的取值范围;
(2)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高二学生有800名,从中抽取100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求图中α的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分、中位数、众数;(精确到个位数)
(Ⅲ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求推测高二这800名学生中数学成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^3}-3x+a,x>0\end{array}\right.$的值域为[0,+∞),则实数a的取值范围是(  )
A.3≥a≥2B.3≥a>2C.a≤2D.a<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设全集U=R,集合A={x|x≤3或x≥6},B={x|-2<x<9}.
(1)求A∪B,(∁UA)∩B;
(2)已知C={x|a<x<a+1},若B∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案