【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从後表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高三丈的标杆BC和DE,前后两杆相距BD=1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,则山峰的高度AH=( ) 步(古制:1步=6尺,1里=180丈=1800尺=300步)
A.1250
B.1255
C.1230
D.1200
科目:高中数学 来源: 题型:
【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=8lnx+15x﹣x2 , 数列{an}满足an=f(n),n∈N+ , 数列{an}的前n项和Sn最大时,n=( )
A.15
B.16
C.17
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥C﹣PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,点M是PC的中点,点N在线段AB上,且MN⊥AB.
(1)求AN的长;
(2)求锐二面角P﹣NC﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过原点O(0,0)且与直线y=2x﹣8相切于点P(4,0).
(1)求圆C的方程;
(2)已知直线l经过点(4, 5),且与圆C相交于M,N两点,若|MN|=2,求出直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.
(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;
(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B﹣DE﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足2 =an+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(an+1)2 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com