精英家教网 > 高中数学 > 题目详情

已知函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;
若不存在,说明理由.

(1),(2)满足条件的值只有一组,且

解析试题分析:(1)根据函数极值求参数,不要忘记列表检验.因为导数为零的点不一定是极值点. 因为,所以由题意,解得.当时,上为减函数,在上为增函数,符合题意;当时,上为增函数,在上为减函数,不符合题意.(2)由值域范围确定解析式中参数范围,是函数中难点.主要用到分类讨论的思想方法.首先因为,所以.① 若,则,因为,所以.设,则,所以上为增函数.由于,即方程有唯一解为.② 若,则,即
(Ⅰ)时,,由①可知不存在满足条件的.(Ⅱ)时,,两式相除得.设,则递增,在递减,由,此时,矛盾.
【解】(1),                
由题意知,解得.                          2分
时,
易知上为减函数,在上为增函数,符合题意;
时,
易知上为增函数,在上为减函数,不符合题意.
所以,满足条件的.                                       5分
(2)因为,所以.                      &n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,其中e为自然对数的底数.
(1)若是增函数,求实数的取值范围;
(2)当时,求函数上的最小值;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若关于的方程有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间;
(2)已知点和函数图象上动点,对任意,直线倾斜角都是钝角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,且为自然对数的底数.
(1)已知,求处的切线方程;
(2)若存在,使得成立,求的取值范围;
(3)设函数为坐标原点,若对于时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)若对于任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

同步练习册答案