若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且,使得:(1)任取x0∈[a,b],有f(x0)=C(C是常数);(2)对于D内任意y0,当y0[a,b],总有f(y0)<C.我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)已知是“平顶型”函数,求出m,n的值.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.
科目:高中数学 来源: 题型:
x2+2x+n |
查看答案和解析>>
科目:高中数学 来源:上海市松江二中2012届高三上学期期中考试数学文科试题 题型:044
若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且[a,b]D,使得:(1)任取x0∈[a,b],有f(x0)=C(C是常数);
(2)对于D内任意y0,当y0[a,b],总有f(y0)<C.
我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)求实数n的值,使函数是“平顶型”函数.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
x2+2x+n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com