精英家教网 > 高中数学 > 题目详情
同时满足下列条件:(1)有反函数;(2)是奇函数;(3)其定义域集合等于值域集合的函数是(  )

A. f(x)=

B.

C. f(x)=-x3

D. f(x)=x5+1

解析:本题可使用排除法,借助是奇函数可去掉A、B、D三个选项.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:①f(x)在[m,n]内是单调的;②当定义域是[m,n]时,f(x)的值域也是[m,n],则称[m,n]是该函数的“梦想区间”.若函数f(x)=a-
1
x
(a>0)
存在“梦想区间”,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面中,△ABC的两个顶点A,B的坐标分别为A(-1,0)B(1,0),平面内两点G,M同时满足下列条件:①
GA
+
GB
+
GC
=
0
;②|
MA
|=|
MB
|=|
MC
|;③
GM
AB

(1)求△ABC的顶点C的轨迹方程;
(2)过点P(3,0)的直线l与(1)中轨迹交于不同的两点E,F,求△OEF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)设集合Pn={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:
①A⊆Pn;②若x∈A,则2x∉A;③若x∈?PnA,则2x∉?PnA.
(1)求f(4);
(2)求f(n)的解析式(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=x2是不是闭函数,若是,请找出区间[a,b],若不是,请另增加一个条件,使f(x)是闭函数.
(3)若函数y=k+
x+2
是闭函数,且在定义域内是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出一个同时满足下列条件的函数f(x):如
f(x)=2cos(
1
2
x+π)+4
f(x)=2cos(
1
2
x+π)+4

①f(x)>0(x∈R)      ②f(x)为周期函数且最小正周期为T=4π    ③f(x)是R上的偶函数   
④f(x)是在(-4π,-2π)上的增函数  ⑤f(x)的最大值与最小值差不小于4.

查看答案和解析>>

同步练习册答案