精英家教网 > 高中数学 > 题目详情
10.已知定义在R上的函数y=f(x)满足下列三个条件:
①对任意的x∈R都有f(x+2)=-f(x);
②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2),
③y=f(x+2)的图象关于y轴对称,
则下列结论中正确的是(  )
A.f(4.5)<f(6.5)<f(7)B.f(7)<f(6.5)<f(4.5)C.f(7)<f(4.5)<f(6.5)D.f(4.5)<f(7)<f(6.5)

分析 对任意的x∈R都有f(x+2)=-f(x),得到函数是一个周期函数T=4,对于任意的0≤x1<x2≤2,都有f(x1)<f(x2),得到函数在[0,2]上是一个递增函数,根据f(x+2)的图象关于y轴对称,得到f(x)的图象关于x=2对称.

解答 解:∵对任意的x∈R都有f(x+2)=-f(x),
∴函数是一个周期函数T=4,
∵对于任意的0≤x1<x2≤2,都有f(x1)<f(x2),
∴函数在[0,2]上是一个递增函数,
且f(0)=-f(2),f(1)=0,
∵f(x+2)的图象关于y轴对称,
∴f(x)的图象关于x=2对称,
f(4.5)=f(0.5)<0,
f(6.5)=f(2.5)>0,
f(7)=f(3)=f(-1)=-f(1)=0,
∵函数在[0,2]上是一个递增函数,
∴f(4.5)<f(7)<f(6.5)
故选:D.

点评 本题考查函数的周期性和函数的单调性,是一个关于函数性质的综合题目,解题的关键是把几个函数的自变量通过变化,放到同一个单调区间上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如果能将一张厚度为0.05mm的报纸对折,再对折,再对折…对折50次后,报纸的厚度为多少?你相信这时报纸的厚度超过了地球和月球之间的距离了吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=${(\frac{a}{x}+\sqrt{x})^9}$,(a为实数并且是常数)
(Ⅰ)已知f(x)的展开式中x3的系数为$\frac{9}{4}$,求常数a.
(Ⅱ)已知a>0,是否存在a的值,使x在定义域中取任意值时,f(x)≥27恒成立?如存在,求出a的值,如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$($\sqrt{2-{x}^{2}}$)dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(x-1,y),$\overrightarrow{b}$=(x+1,y).|$\overrightarrow a$|+|$\overrightarrow b$|=4
(1)求M(x,y)的轨迹方程C.
(2)P为曲线C上一动点,F1(-1,0),F2(1,0),求$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的最大值和最小值;
(3)直线l与曲线C交于A,B两点,若以AB为直径的圆过原点O,试探究点O到直线l 的距离是否为定值?若是,求出该定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为(  )
A.$\frac{3}{10}$B.$\frac{7}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在区间[0,a](a≥10)上随机选取一个数x,若数x落在[0,10]的概率为$\frac{1}{4}$,则a=40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=sin(x+2φ)-2sin(x+φ)的最大值为$\sqrt{5-4cosφ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为$({\sqrt{3},0})$,且Γ上一点到其两焦点的距离之和为4.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)设直线y=x+m与椭圆Γ交于不同两点A,B,若点P(0,1)满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求实数m的值.

查看答案和解析>>

同步练习册答案