精英家教网 > 高中数学 > 题目详情
(2013•天津)设函数f(x)=ex+x-2,g(x)=lnx+x2-3.若实数a,b满足f(a)=0,g(b)=0,则(  )
分析:先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围即可.
解答:解:①由于y=ex及y=x-2关于x是单调递增函数,∴函数f(x)=ex+x-2在R上单调递增,
分别作出y=ex,y=2-x的图象,∵f(0)=1+0-2<0,f(1)=e-1>0,f(a)=0,∴0<a<1.
同理g(x)=lnx+x2-3在R+上单调递增,g(1)=ln1+1-3=-2<0,g(
3
)=ln
3
+(
3
)2-3=
1
2
ln3>0
,g(b)=0,∴1<b<
3

∴g(a)=lna+a2-3<g(1)=ln1+1-3=-2<0,
f(b)=eb+b-2>f(1)=e+1-2=e-1>0.
∴g(a)<0<f(b).
故选A.
点评:熟练掌握函数的单调性、函数零点的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津)设a,b∈R,则“(a-b)a2<0”是“a<b”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,离心率为
3
3
,过点F且与x轴垂直的直线被椭圆截得的线段长为
4
3
3

(Ⅰ)求椭圆的方程;
(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
AC
DB
+
AD
CB
=8,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设a∈[-2,0],已知函数f(x)=
x3-(a+5)x,x≤0
x3-
a+3
2
x2+ax,
x>0

(Ⅰ) 证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ) 设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)设a+b=2,b>0,则当a=
-2
-2
时,
1
2|a|
+
|a|
b
取得最小值.

查看答案和解析>>

同步练习册答案