【题目】已知抛物线的焦点为,为坐标原点,过点的直线与交于、两点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与轴的交点为,且,,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.
【答案】(1);(2)为定值.
【解析】
(1)对直线的斜率是否存在进行分类讨论,由直线与圆相切,得出圆心到直线的距离等于半径,进而可求得直线的方程;
(2)对直线的斜率是否存在进行分类讨论,可知当直线的斜率不存在时不满足题意,在直线的斜率存在时,设直线的方程为,与抛物线的方程联立,列出韦达定理,利用向量的坐标运算得出关于、的表达式,代入韦达定理化简计算可求得的值.
(1)由已知得.
当直线的斜率不存在时,直线的方程为,此时,直线与圆相交,不合乎题意;
当直线的斜率存在时,设直线的方程为,即,
由直线与圆相切,得,解得.
综上所述,直线的方程为;
(2)当直线的斜率不存在时,直线的方程为,则直线与抛物线只有一个交点,不合乎题意;
当直线与轴不重合时,设直线的方程为,设、.
若,则直线与轴平行,不合乎题意,所以.
联立,消去并整理得,由韦达定理得,
易知,由,得,
则,,同理可得,
所以,
所以为定值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数,).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的圾坐标方,且直线l与曲线C相交于A,B两点.
(1)求曲线C的普通方程和l的直角坐标方程;
(2)若,点满足,求此时r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,设函数,.
(1)试讨论的单调性;
(2)设函数,是否存在实数,使得存在两个极值点,,且满足?若存在,求的取值范围;若不存在,请说明理由.
注:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,).
(1)若,且在内有且只有一个零点,求的值;
(2)若,且有三个不同零点,问是否存在实数使得这三个零点成等差数列?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:
①;
②函数在内有且仅有个零点;
③不等式的解集为.
其中,正确结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下图. 若输出的 的值为 350,则判断框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点,点A在x轴的非正半轴上运动,点B在y轴上运动,满足,A关于点B的对称点为M,设点M的轨迹为曲线C.
(1)求C的方程;
(2)已知点,动直线与C相交于P,Q两点,求过G,P,Q三点的圆在直线上截得的弦长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com