精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,设函数,且的图象过点和点.

(Ⅰ)求的值;

(Ⅱ)将的图象向左平移)个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.

【答案】I.

II)函数的单调递增区间为.

【解析】试题分析:()利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点和点代入就可得到关于的方程,解方程求其值;()利用图像平移的方法得到的解析式,利用最高点到点的距离的最小值为1求得角,得,求减区间需令的范围

试题解析:(1)由题意知

的过图象过点

所以解得

2)由(1)知

由题意知

的图象上符合题意的最高点为

由题意知,所以,即到点(03)的距离为1的最高点为(02).

将其代入,因为,所以

因此

ZZ

所以函数的单调递增区间为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一企业从某生产线上随机抽取件产品,测量这些产品的某项技术指标值,得到的频率分布直方图如图.

(1)估计该技术指标值平均数

(2)在直方图的技术指标值分组中,以落入各区间的频率作为取该区间值的频率,若,则产品不合格,现该企业每天从该生产线上随机抽取件产品检测,记不合格产品的个数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分图是某市今年1月份前30天空气质量指数AQI的趋势图.

(1)根据该图数据在答题卷中完成频率分布表,并在图中补全这些数据的频率分布直方图;

(2)空气质量指数AQI小于100时,表示空气质量优良某人随机选择按30天计某一天

到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知=).

()当=2时,求函数在(1,)处的切线方程;

()若≥1时,≥0,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贵阳市创建全国文明城市工作验收时国家文明委有关部门对高二年级6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为(  )

A. B. C. D..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于;点A坐标(p,q),曲线C方程:y= ,直线l过A点,且和曲线C只有一个交点,则直线l的斜率取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,).

(1)讨论函数的单调区间;

(2)当时,若函数是自然对数的底数)上有两个零点,求的最小值.

查看答案和解析>>

同步练习册答案