精英家教网 > 高中数学 > 题目详情
已知正三棱锥P-ABC的外接球心为O,且满足
OA
+
OB
+
OC
=
0
,如果球的半径为
2
,则正三棱锥的体积为
6
2
6
2
分析:由题意
OA
+
OB
+
OC
=
0
,可知球心在三棱锥的底面中心,推出球的半径,求出正三棱锥的高,底面面积,即可得到球的体积.
解答:解:正三棱锥P-ABC的外接球心为O,且满足
OA
+
OB
+
OC
=
0
,所以球心在三棱锥的底面中心,球的半径为
2

所以正三棱锥的高为:
2
,正三棱锥的底面边长为:2
(
2
)
2
-(
2
2
)
2
=
6

所以底面面积为:
3
4
×(
6
)
2
=
3
3
2

所以正三棱锥的体积:
1
3
×
3
3
2
×
2
=
6
2

故答案为:
6
2
点评:本题是基础题,确定球的球心的位置是解题的关键,注意正三棱锥的体积的求法,正三角形的面积的应用,考查计算能力,空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的侧棱长为2,底面边长为1,平行四边形EFGH的四个顶点分别在棱AB、BC、CP、PA上,则
1
EF
+
1
FG
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正三棱锥P-ABC主视图如图所示,其中△PAB中,AB=PC=2cm,则这个正三棱锥的左视图的面积为
 
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的底面边长为6,侧棱长为
13
.有一动点M在侧面PAB内,它到顶点P的距离与到底面ABC的距离比为2
2
:1

精英家教网
(1)求动点M到顶点P 的距离与它到边AB的距离之比;
(2)在侧面PAB所在平面内建立为如图所示的直角坐标系,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省四星高中高三数学小题训练(7)(解析版) 题型:解答题

已知正三棱锥P-ABC主视图如图所示,其中△PAB中,AB=PC=2cm,则这个正三棱锥的左视图的面积为    cm2

查看答案和解析>>

科目:高中数学 来源:2010年江苏省苏州市高考信息数学试卷(正题)(解析版) 题型:解答题

已知正三棱锥P-ABC主视图如图所示,其中△PAB中,AB=PC=2cm,则这个正三棱锥的左视图的面积为    cm2

查看答案和解析>>

同步练习册答案