精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

【答案】(1) ;增区间.

(2) 的最小值为,取“”时.

(3) .

【解析】

分析:(Ⅰ)由偶函数的定义得,求出的值.再根据二次函数单调区间的判断方法,确定的增区间;

(Ⅱ)根据已知条件结合韦达定理,求得的值.再化简整理的表达式,结合和基本不等式即可得到答案.

(Ⅲ)先求出区间上,再将不等式恒成立,转化为恒成立问题,构造新函数恒成立,分类讨论求得参数的值.

详解:解:(Ⅰ) 为偶函数,

,即,解得.

所以,函数,对称轴增区间

(Ⅱ)由题知

又∵

的最小值为,取

(Ⅲ)时,

恒成立

,(

①当时,

②当时,

③当时,

综上所述,的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数在点处的切线方程;

(2)求函数的极值;

(3)若函数在区间上是增函数,试确定的取值范围.

【答案】(1);(2)当时, 恒成立, 不存在极值.当时,

有极小值无极大值.(3)

【解析】试题分析:

(1)当时,求得,得到的值,即可求解切线方程.

(2)由定义域为,求得,分时分类讨论得出函数的单调区间,即可求解函数的极值.

(3)根据题意上递增,得恒成立,进而求解实数的取值范围.

试题解析:

(1)当时,

,又,∴切线方程为.

(2)定义域为 ,当时, 恒成立, 不存在极值.

时,令,得,当时, ;当时,

所以当时, 有极小值无极大值.

(3)∵上递增,∴恒成立,即恒成立,∴

点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数(3)考查数形结合思想的应用

型】解答
束】
22

【题目】已知圆 和点 是圆上任意一点,线段的垂直平分线和相交于点 的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,直线两点,直线 的斜率分别是 ,若,求:①的值;②面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:

温度(单位:℃)

21

23

24

27

29

32

死亡数(单位:株)

6

11

20

27

57

77

经计算:.

其中分别为试验数据中的温度和死亡株数,

(1)是否有较强的线性相关性? 请计算相关系数(精确到)说明.

(2)并求关于的回归方程(都精确到);

(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据,……,

线性相关系数通常情况下当大于0.8时,认为两

个变量有很强的线性相关性

其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点的内心,记,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数同时满足:①在定义域内存在,使得成立;

②不等式的解集有且只有一个元素;数列的前项和为

(Ⅰ)求的表达式;

(Ⅱ)求数列的通项公式;

(Ⅲ)设的前项和为,若对任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在桂林市某中学高中数学联赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图.分数在85分或85分以上的记为优秀.

(1)根据茎叶图读取出乙学生6次成绩的众数,并求出乙学生的平均成绩以及成绩的中位数;

(2)若在甲学生的6次模拟测试成绩中去掉成绩最低的一次,在剩下5次中随机选择2次成绩作为研究对象,求在选出的成绩中至少有一次成绩记为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平直角坐标系中,已知点

(1)在轴的正半轴上求一点,使得以为直径的圆过点,并求该圆的方程;

(2)在(1)的条件下,点在线段内,且平分,试求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点 和一动点,给出下列结论:

①若,则点的轨迹是椭圆;

②若,则点的轨迹是双曲线;

③若,则点的轨迹是圆;

④若,则点的轨迹关于原点对称;

⑤若直线斜率之积等于,则点的轨迹是椭圆(除长轴两端点).

其中正确的是__________(填序号).

查看答案和解析>>

同步练习册答案