精英家教网 > 高中数学 > 题目详情
17.某三棱锥的三视图如图所示,主视图和俯视图为全等的等腰直角三角形,则该棱锥最长的棱长为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{2}$

分析 由已知中的三视力可得该几何体是一个以左视图为底面的三棱锥,可得答案.

解答 解:由已知中的三视力可得该几何体是一个以左视图为底面的三棱锥,底面是底边为1,高为1的三角形,高h=1,最长的棱所在的面是直角边长分别为1,$\sqrt{1+0.{5}^{2}}$的直角三角形,斜边长为$\frac{3}{2}$,
故选:A.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:
第一步:构造数列1,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,…,$\frac{1}{n}$.①
第二步:将数列①的各项乘以n,得到数列(记为)a1,a2,a3,…,an.则a1a2+a2a3+…+an-1an=n(n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C的极坐标方程是ρ-8cosθ+4sinθ+$\frac{4}{ρ}$=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在平面直角坐标系xOy中,直线l经过点P(5,-2),倾斜角α=$\frac{π}{3}$.
(1)学出曲线C的直角坐标方程和直线l的参数方程;
(2)设l与曲线C相交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点P(3m,-2m)(m<0)在角α的终边上,求sinα,cosα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校高三年级共有学生195人,其中女生105人,男生90人.现采用按性别分层抽样的方法,从中抽取13人进行问卷调查.设其中某项问题的选择分别为“同意”、“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
同意不同意合计
女学生437
男学生4           26
(Ⅰ)完成上述统计表;
(Ⅱ)根据上表的数据估计高三年级学生该项问题选择“同意”的人数;
(Ⅲ) 从被抽取的女生中随机选取2人进行访谈,求选取的2名女生中至少有一人选择“同意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,-cosx),f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别是内角A,B,C的对边,若f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对任意函数f(x),x∈D,可按如图所示,构造一个数列发生器,其工作原理如下:
①输入数据x0∈D,经数列发生器输出x1=f(x0);
②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈输入端,再输出x2=f(x1),并以此规律进行下去,现定义$f(x)=\frac{4x-2}{x+1}$.
(1)若输入${x_0}=\frac{49}{65}$,则由数列发生器产生数列{xn},写出数列{xn}的所有项;
(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由动点P引圆x2+y2=1两条切线PA、PB,切点分别为A,B,∠APB=90°,则动点P的轨迹方程为x2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在N*上的单调增函数y=f(x),对于任意的n∈N*,都有f(n)∈N*且f(f(n))=3n恒成立,则f(2017)-f(1999)=18.

查看答案和解析>>

同步练习册答案