精英家教网 > 高中数学 > 题目详情
(2013•怀化三模)如图1中矩形ABCD中,已知AB=2,AD=2
2
,MN分别为AD和BC的中点,对角线BD与MN交于O点,沿MN把矩形ABNM折起,使平面ABNM与平面MNCD所成角为60°,如图2
(1)求证:BO⊥DO;
(2)求AO与平面BOD所成角的正弦值.
分析:方法一:(1)先判断∠AMD 是平面ABNM与平面MNCD的平面角,进一步证明△BOD是直角三角形,即可知BO⊥DO;
(2)设E,F是BD,CD的中点,则EF⊥CD,OF⊥CD,所以CD⊥面OEF,OE⊥CD,过A作AH⊥BD,由面面垂直的性质定理,可得AH⊥平面BOD,连接OH,则可证∠AOH为AO与平面BOD所成角;
方法二:(1)建立空间直角坐标系,用坐标表示向量,证明
BO
DO
=0,即可;
(2)求出平面BOD的法向量是
n
=(x,y,z)
AO
=(-
6
2
-
2
2
,-1),再利用向量夹角公式即可求得结论.
解答:方法一:(1)证明:由题设,M,N是矩形的边AD和BC的中点,所以AM⊥MN,BC⊥MN,
∵折叠垂直关系不变,∴∠AMD 是平面ABNM与平面MNCD的平面角,依题意,所以∠AMD=60°,…(2分)
由AM=DM,可知△MAD是正三角形,所以AD=
2

在矩形ABCD中,AB=2,AD=2
2
,所以,BD=
6
,由题可知BO=OD=
3

由勾股定理可知△BOD是直角三角形,所以BO⊥DO     …(5分)
(2)解:如图1(2)设E,F是BD,CD的中点,则EF⊥CD,OF⊥CD,所以CD⊥面OEF,OE⊥CD
又BO=OD,所以OE⊥BD,OE⊥面ABCD,OE?面BOD,平面BOD⊥平面ABCD
过A作AH⊥BD,由面面垂直的性质定理,可得AH⊥平面BOD,连接OH,…(8分)
所以OH是AO在平面BOD的投影,
所以∠AOH为所求的角,即AO与平面BOD所成角.…(11分)
AH是RT△ABD斜边上的高,所以AH=
2
3
3
,BO=OD=
3

所以sin∠AOH=
2
3
(14分)
方法二:空间向量:取MD,NC中点P,Q,如图2建系,则Q(0,0,0),B(
6
2
,0,0),D(0,
2
2
,2),O(0,-
2
2
,1),
所以
BO
=(-
6
2
-
2
2
,1),
DO
=(0,-
2
,-1)
所以
BO
DO
=0,即BO⊥DO(5分)
(2)设平面BOD的法向量是
n
=(x,y,z)

可得-
6
2
x
-
2
2
y
+z=0-
2
y
-z=0,令y=
2
可得x=-
6
,z=-2

所以A
n
=(-
6
2
,-2)

AO
=(-
6
2
-
2
2
,-1),
设AO与平面BOD所成角为θ
sinθ=|cos<
AO
n>
|
=
2
3
(14分)
点评:本题以平面图形的翻折为载体,考查线线垂直,考查线面角,既用传统方法,又用向量方法,两法并举,细细体会.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化三模)一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)计算 (log29)•(log34)=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)若正数a,b,c满足a+b+c=1,则
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)每年的三月十二日是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两批树苗中各抽了10株,测得髙度如下茎叶图,(单位:厘米),规定树苗髙于132厘米为“良种树苗”.

(I)根据茎叶图,比较甲、乙两批树苗的高度,哪种树苗长得整齐?
(Ⅱ)设抽测的10株甲种树苗高度平均值为
.
x
,将这10株树苗的高度依次输入如图程序框图进行运算,问输出的S为多少?.
(Ⅲ)从抽测的甲乙两种“良种树苗”中任取2株,至少1株是甲种树苗的概率.

查看答案和解析>>

同步练习册答案