精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,已知点A(1,2,4),点B与点A关于y轴对称,点C与点A关于平面xOz对称,求点B与点C之间的距离.
考点:空间两点间的距离公式,空间中的点的坐标
专题:空间位置关系与距离
分析:求出点A(1,2,4)关于y轴的对称点为B,关于平面xoz的对称点为C,直接利用空间零点距离公式求出距离即可.
解答: 解:在空间直角坐标系中,点A(1,2,4)关于平面xoz的对称点为C(1,-2,4),
点A(1,2,4)关于x轴的对称点为B(-1,2,-4),
则B、C间的距离为:
(1+1)2+(2+2)2+(4+4)2
=2
21
点评:本题考查空间点的对称坐标的求法,两点的距离公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

掷两枚骰子,出现点数之和为3的概率是(  )
A、
1
4
B、
1
9
C、
1
12
D、
1
18

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)y=
3
1-
1-x

(2)y=
(x+1)0
|x|-x

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},试求∁UB,A∪B,A∩B,A∩(∁UB),(∁U A)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正方体ABCD-A1B1C1D1中,E是棱CC1的中点.
(Ⅰ)证明:AC1∥平面BDE;
(Ⅱ)求三棱锥E-BCD的体积
(Ⅲ)求异面直线BC1,CD1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,设a=f(log47),b=f(log23),c=f(0.20.6),则a,b,c的大小关系是(  )
A、c<b<a
B、b<c<a
C、b<a<c
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,抛物线y2=2bx的焦点为F,若
F1F
=
7
5
FF2
,则a:b的值为(  )
A、
2
B、2
C、
5
D、
10

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
3
x3+ax2
+x,
(1)若当x=-1时,f(x)取得极值,求a的值,并求出f(x)的单调区间;
(2)若f(x)存在极值,求a的取值范围;
(3)若a为任意实数,试求出f′(sinx)的最小值g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=1+t
y=-1+t
(t为参数),则直线l的普通方程为
 

查看答案和解析>>

同步练习册答案