精英家教网 > 高中数学 > 题目详情

已知三点A(x0,y0)、B(1,1)、C(5,2),如果一个线性规划问题的可行域是△ABC的边界及其内部,线性目标函数z=ax+by在点B处取得最小值3,在点C处取得最大值12,则下列关系成立的是


  1. A.
    3≤x0+2y0≤12
  2. B.
    x0+2y0≤3或x0+2y0≥12
  3. C.
    3≤2x0+y0≤12
  4. D.
    2x0+y0≤3或2x0+y0≥12
C
由题设,得zmin=a+b=3,zmax=5a+2b=12,联立解得a=2,b=1,则z=2x+y.又对于可行域内任意点(x,y),都有3≤z≤12,故3≤2x0+y0≤12.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西)已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2.
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|
MA
+
MB
|=
MA
•(
OA
+
OB
)+2

(1)求曲线C的方程;
(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省高三上学期第二次段考理科数学试卷(解析版) 题型:解答题

已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足||=·()+2.

(1)求曲线C的方程;

(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为,点P的坐标是(0,-1),与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(江西卷解析版) 题型:解答题

已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足.

(1)   求曲线C的方程;

(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值。若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=+)+2。
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l,问:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值,若不存在,说明理由。

查看答案和解析>>

同步练习册答案