精英家教网 > 高中数学 > 题目详情
是平面内的三点,设平面的法向量,则_______________。
 
依题意可得,,由可得
,从而可得
所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正方体ABCDABCD′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则以下结论中错误的是(   )
A.四边形BFDE一定是平行四边形B.四边形BFDE有可能是正方形
C.四边形BFDE有可能是菱形D.四边形BFDE在底面投影一定是正方形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知如下结论:“等边三角形内任意一点到各边的距离之和等于此三角形的高”,将此结论拓展到空间中的正四面体(棱长都相等的三棱锥),可得出的正确结论是:  ____

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱锥中,平面.  若其主视图,俯视图如图所示,则其左视图的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成角为( )
A.30°
B.45°
C.60°
D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体中,,点分别是棱 的中点。
(Ⅰ)求证:平面
(Ⅱ)求证:四边形为矩形;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分15分)如图,在四棱锥中,底面是边长为2的正方形,侧棱
(1) 求证:侧面底面
(2) 求侧棱与底面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行六面体中,,则对角线的长度为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,已知四棱锥P—ABCD,底面ABCD为菱形,PA平面ABCD,ABC=60O,E,F分别是BC,PC
的中点。H为PD上的动点,EH与平面PAD所成最大角的正切值为
(1)  证明:AEPD;
(2)  求异面直线PB与AC所成的角的余弦值;
(3)  若AB=2,求三棱锥P—AEF的体积。

查看答案和解析>>

同步练习册答案